Giải bài tập 3 trang 24 SGK Toán 12 tập 1 - Chân trời sáng tạo


Tìm các tiệm cận của đồ thị hàm số sau: a) \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\) b) \(y = \frac{{{x^2} + x - 1}}{x}\) c) \(y = \frac{{16{x^2} - 8x}}{{16{x^2} + 1}}\)

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

 

 

Tìm các tiệm cận của đồ thị hàm số sau:

a) \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\)     

         

b) \(y = \frac{{{x^2} + x - 1}}{x}\)

  

c) \(y = \frac{{16{x^2} - 8x}}{{16{x^2} + 1}}\)

 

Phương pháp giải - Xem chi tiết

Quan sát đồ thị

 

Lời giải chi tiết

a) Đường thẳng x = 1 và x = 2 là tiệm cận đứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\)

Đường thẳng y = 0 là tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\)

b) Đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + x - 1}}{x}\)

Đường thẳng y = \(x + 1\) là tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + x - 1}}{x}\)

c) Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số \(y = \frac{{16{x^2} - 8x}}{{16{x^2} + 1}}\)

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí