Giải bài tập 3 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo


Tính các tích phân sau: a) \(\int\limits_{ - 2}^4 {\left( {x + 1} \right)\left( {x - 1} \right)dx} \) b) \(\int\limits_1^2 {\frac{{{x^2} - 2x + 1}}{x}dx} \) c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {3\sin x - 2} \right)dx} \) d) \(\int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^2}x}}{{1 + \cos x}}dx} \)

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Tính các tích phân sau:

a) \(\int\limits_{ - 2}^4 {\left( {x + 1} \right)\left( {x - 1} \right)dx} \)

b) \(\int\limits_1^2 {\frac{{{x^2} - 2x + 1}}{x}dx} \)

c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {3\sin x - 2} \right)dx} \)

d) \(\int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^2}x}}{{1 + \cos x}}dx} \)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất tích phân của một tổng, một hiệu để đưa về tính các tích phân đơn giản.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) \(\int\limits_{ - 2}^4 {\left( {x + 1} \right)\left( {x - 1} \right)dx}  = \int\limits_{ - 2}^4 {\left( {{x^2} - 1} \right)} dx = \left. {\left( {\frac{{{x^3}}}{3} - x} \right)} \right|_{ - 2}^4 = \left( {\frac{{{4^3}}}{3} - 4} \right) - \left( {\frac{{{{\left( { - 2} \right)}^3}}}{3} - \left( { - 2} \right)} \right) = 18\)

b) \(\int\limits_1^2 {\frac{{{x^2} - 2x + 1}}{x}dx}  = \int\limits_1^2 {\left( {x - 2 + \frac{1}{x}} \right)dx = \left. {\left( {\frac{{{x^2}}}{2} - 2x + \ln \left| x \right|} \right)} \right|_1^2} \)

\( = \left( {\frac{{2{\rm{^2}}}}{2} - 2.2 + \ln \left| 2 \right|} \right) - \left( {\frac{{1{\rm{^2}}}}{2} - 1.2 + \ln \left| 1 \right|} \right) = \ln 2 - \frac{1}{2}\)

c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {3\sin x - 2} \right)dx}  = 3\int\limits_0^{\frac{\pi }{2}} {\sin xdx}  - 2\int\limits_0^{\frac{\pi }{2}} {dx}  = 3\left. {\left( { - \cos x} \right)} \right|_0^{\frac{\pi }{2}} - 2\left. {\left( x \right)} \right|_0^{\frac{\pi }{2}}\)

\( = 3\left[ {\left( { - \cos \frac{\pi }{2}} \right) - \left( { - \cos 0} \right)} \right] - 2\left( {\frac{\pi }{2} - 0} \right) = 3 - \pi \)

d) \(\int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^2}x}}{{1 + \cos x}}dx}  = \int\limits_0^{\frac{\pi }{2}} {\frac{{1 - {{\cos }^2}x}}{{1 + \cos x}}dx}  = \int\limits_0^{\frac{\pi }{2}} {\frac{{\left( {1 - \cos x} \right)\left( {1 + \cos x} \right)}}{{1 + \cos x}}dx = \int\limits_0^{\frac{\pi }{2}} {\left( {1 - \cos x} \right)dx} } \)

\( = \left. {\left( {x - \sin x} \right)} \right|_0^{\frac{\pi }{2}} = \left( {\frac{\pi }{2} - \sin \frac{\pi }{2}} \right) - \left( {0 - \sin 0} \right) = \frac{\pi }{2} - 1\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí