Giải bài tập 2 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo>
a) Lập phương trình của các mặt phẳng toạ độ \(\left( {Oxy} \right)\), \(\left( {Oyz} \right)\), \(\left( {Oxz} \right)\). b) Lập phương trình của các mặt phẳng đi qua điểm \(A\left( { - 1;9;8} \right)\) và lần lượt song song với các mặt phẳng toạ độ trên.
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
a) Lập phương trình của các mặt phẳng toạ độ \(\left( {Oxy} \right)\), \(\left( {Oyz} \right)\), \(\left( {Oxz} \right)\).
b) Lập phương trình của các mặt phẳng đi qua điểm \(A\left( { - 1;9;8} \right)\) và lần lượt song song với các mặt phẳng toạ độ trên.
Phương pháp giải - Xem chi tiết
a) Xác định một điểm đi qua và một vectơ pháp tuyến lần lượt của các mặt phẳng \(\left( {Oxy} \right)\), \(\left( {Oyz} \right)\), \(\left( {Oxz} \right)\).
b) Các mặt phẳng \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) đi qua \(A\left( { - 1;9;8} \right)\) và lần lượt song song với các mặt phẳng toạ độ \(\left( {Oxy} \right)\), \(\left( {Oyz} \right)\), \(\left( {Oxz} \right)\) nên sẽ có các vectơ pháp tuyến theo thứ tự là vectơ pháp tuyến của \(\left( {Oxy} \right)\), \(\left( {Oyz} \right)\), \(\left( {Oxz} \right)\)
Lời giải chi tiết
a) Các mặt phẳng toạ độ \(\left( {Oxy} \right)\), \(\left( {Oyz} \right)\), \(\left( {Oxz} \right)\) đều đi qua điểm \(O\left( {0;0;0} \right)\).
Mặt phẳng \(\left( {Oxy} \right)\) có một vectơ pháp tuyến là \(\vec k = \left( {0;0;1} \right)\) nên phương trình mặt phẳng \(\left( {Oxy} \right)\) là \(0\left( {x - 0} \right) + 0\left( {y - 0} \right) + 1\left( {z - 0} \right) = 0 \Leftrightarrow z = 0\).
Mặt phẳng \(\left( {Oyz} \right)\) có một vectơ pháp tuyến là \(\vec i = \left( {1;0;0} \right)\) nên phương trình mặt phẳng \(\left( {Oyz} \right)\) là \(1\left( {x - 0} \right) + 0\left( {y - 0} \right) + 0\left( {z - 0} \right) = 0 \Leftrightarrow x = 0\).
Mặt phẳng \(\left( {Oxz} \right)\) có một vectơ pháp tuyến là \(\vec j = \left( {0;1;0} \right)\) nên phương trình mặt phẳng \(\left( {Oxz} \right)\) là \(0\left( {x - 0} \right) + 1\left( {y - 0} \right) + 0\left( {z - 0} \right) = 0 \Leftrightarrow y = 0\)
b) Gọi \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) đi qua \(A\left( { - 1;9;8} \right)\) và lần lượt song song với các mặt phẳng toạ độ \(\left( {Oxy} \right)\), \(\left( {Oyz} \right)\), \(\left( {Oxz} \right)\).
Mặt phẳng \(\left( P \right)\) song song với \(\left( {Oxy} \right)\), nên \(\left( P \right)\) có một vectơ pháp tuyến là \(\vec k = \left( {0;0;1} \right)\). Phương trình mặt phẳng \(\left( P \right)\) là \(0\left( {x + 1} \right) + 0\left( {y - 9} \right) + 1\left( {z - 8} \right) = 0 \Leftrightarrow z - 8 = 0\)
Mặt phẳng \(\left( Q \right)\) song song với \(\left( {Oyz} \right)\), nên \(\left( Q \right)\) có một vectơ pháp tuyến là \(\vec i = \left( {1;0;0} \right)\). Phương trình mặt phẳng \(\left( Q \right)\) là \(1\left( {x + 1} \right) + 0\left( {y - 9} \right) + 0\left( {z - 8} \right) = 0 \Leftrightarrow x + 1 = 0\)
Mặt phẳng \(\left( R \right)\) song song với \(\left( {Oxy} \right)\), nên \(\left( R \right)\) có một vectơ pháp tuyến là \(\vec j = \left( {0;1;0} \right)\). Phương trình mặt phẳng \(\left( R \right)\) là \(0\left( {x + 1} \right) + 1\left( {y - 9} \right) + 0\left( {z - 8} \right) = 0 \Leftrightarrow y - 9 = 0\)
- Giải bài tập 3 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 4 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 5 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 6 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 7 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo