Giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo>
Một công trường xây dựng nhà cao tầng đã thiết lập hệ toạ độ \(Oxyz\). Hãy kiểm tra tính song song hoặc vuông góc giữa các mặt kính \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) của một toà nhà, biết: \(\left( P \right):3x + y - z + 2 = 0\) \(\left( Q \right):6x + 2y - 2z + 11 = 0\) \(\left( R \right):x - 3y + 1 = 0\)
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Một công trường xây dựng nhà cao tầng đã thiết lập hệ toạ độ \(Oxyz\). Hãy kiểm tra tính song song hoặc vuông góc giữa các mặt kính \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) của một toà nhà, biết:
\(\left( P \right):3x + y - z + 2 = 0\)
\(\left( Q \right):6x + 2y - 2z + 11 = 0\)
\(\left( R \right):x - 3y + 1 = 0\)
Phương pháp giải - Xem chi tiết
Viết các vectơ pháp tuyến của các mặt phẳng \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\). Sau đó kiểm tra tính song song hoặc vuông góc của các mặt phẳng đó.
Lời giải chi tiết
Các vectơ pháp tuyến của các mặt phẳng \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) lần lượt là \(\overrightarrow {{n_{\left( P \right)}}} = \left( {3;1; - 1} \right)\), \(\overrightarrow {{n_{\left( Q \right)}}} = \left( {6;2; - 2} \right)\) và \(\overrightarrow {{n_{\left( R \right)}}} = \left( {1; - 3;0} \right).\)
Ta thấy rằng \(\frac{3}{6} = \frac{1}{2} = \frac{{ - 1}}{{ - 2}}\) nên \(\overrightarrow {{n_{\left( P \right)}}} \) và \(\overrightarrow {{n_{\left( Q \right)}}} \) là 2 vectơ cùng phương. Từ đó suy ra \(\left( P \right)\parallel \left( Q \right).\)
Ta có \(\overrightarrow {{n_{\left( P \right)}}} .\overrightarrow {{n_{\left( R \right)}}} = 3.1 + 1.\left( { - 3} \right) + \left( { - 1} \right).0 = 0\) nên \(\overrightarrow {{n_{\left( P \right)}}} \) và \(\overrightarrow {{n_{\left( R \right)}}} \) có giá vuông góc với nhau. Suy ra \(\left( P \right) \bot \left( R \right).\)
Ta có \(\overrightarrow {{n_{\left( Q \right)}}} .\overrightarrow {{n_{\left( R \right)}}} = 6.1 + 2.\left( { - 3} \right) + \left( { - 2} \right).0 = 0\) nên \(\overrightarrow {{n_{\left( Q \right)}}} \) và \(\overrightarrow {{n_{\left( R \right)}}} \) có giá vuông góc với nhau. Suy ra \(\left( Q \right) \bot \left( R \right).\)
- Giải bài tập 9 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 8 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 7 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 6 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 5 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo