Giải bài 74 trang 36 sách bài tập toán 12 - Cánh diều


Đường cong ở Hình 18 là đồ thị của hàm số: A. \(y = \frac{{{x^2} - 2{\rm{x}}}}{{x - 1}}\). B. \(y = \frac{{{x^2} + 2{\rm{x}}}}{{ - x + 1}}\). C. \(y = \frac{{ - {x^2} + 2{\rm{x}}}}{{2{\rm{x}} - 2}}\). D. \(y = \frac{{ - {x^2} + 2{\rm{x}}}}{{x - 1}}\).

Đề bài

Đường cong ở Hình 18 là đồ thị của hàm số:

A. \(y = \frac{{{x^2} - 2{\rm{x}}}}{{x - 1}}\).

B. \(y = \frac{{{x^2} + 2{\rm{x}}}}{{ - x + 1}}\).

C. \(y = \frac{{ - {x^2} + 2{\rm{x}}}}{{2{\rm{x}} - 2}}\).

D. \(y = \frac{{ - {x^2} + 2{\rm{x}}}}{{x - 1}}\).

Phương pháp giải - Xem chi tiết

‒ Xét giao điểm của đồ thị hàm số với các trục toạ độ.

‒ Xét các đường tiệm cận của đồ thị hàm số.

Lời giải chi tiết

Đồ thị hàm số đi qua điểm \(\left( {2;0} \right)\). Vậy loại C.

Đồ thị hàm số có tiệm cận xiên là đường thẳng đi qua hai điểm \(\left( {1;0} \right)\) và \(\left( {0;1} \right)\). Vậy \(y =  - x + 1\) là tiệm cận xiên của đồ thị hàm số. Vậy loại A, B.

Chọn D.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 75 trang 36 sách bài tập toán 12 - Cánh diều

    Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) với \(a > 0\) có đồ thị là đường cong ở Hình 19. Mệnh đề nào dưới đây đúng? A. \(b > 0,c < 0,d < 0\). B. \(b > 0,c > 0,d < 0\). C. \(b < 0,c > 0,d < 0\). D. \(b < 0,c < 0,d < 0\).

  • Giải bài 76 trang 37 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = a{x^3} + b{x^2} + cx + dleft( {a ne 0} right)) có đồ thị là đường cong ở Hình 20. a) (a > 0). b) Đồ thị cắt trục tung tại điểm có tung độ dương. c) Đồ thị hàm số có hai điểm cực trị nằm cùng phía với trục tung. d) (b < 0).

  • Giải bài 77 trang 37 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{a{x^2} + bx + c}}{{x + n}}) có đồ thị là đường cong ở Hình 21. a) (n < 0). b) (a > 0). c) (c > 0). d) (b < 0).

  • Giải bài 78 trang 37 sách bài tập toán 12 - Cánh diều

    Cho hàm số bậc ba (y = fleft( x right) = a{x^3} + b{x^2} + cx + d) có đồ thị là đường cong như Hình 22. Căn cứ vào đồ thị hàm số: a) Tìm khoảng đơn điệu, điểm cực đại, cực tiểu của hàm số. b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn (left[ { - 1;2} right]) c) Tìm điểm trên đồ thị hàm số có hoành độ bằng 2. d) Tìm điểm trên đồ thị hàm số có tung độ bằng 2. e) Đường thẳng (y = 1) cắt đồ thị hàm số (y = fleft( x right)) tại mấy điểm? g) Với giá trị nào củ

  • Giải bài 79 trang 38 sách bài tập toán 12 - Cánh diều

    Cho hàm số (y = fleft( x right) = frac{{a{x^2} + bx + c}}{{mx + n}}) (với (a,m ne 0)) có đồ thị là đường cong như Hình 23. Căn cứ vào đồ thị hàm số: a) Tìm khoảng đơn điệu, điểm cực đại, cực tiểu của hàm số. b) Viết phương trình đường tiệm cận đứng, tiệm cận xiên của đồ thị hàm số. c) Phương trình (fleft( x right) = 3) có bao nhiêu nghiệm? d) Tìm công thức xác định hàm số (y = fleft( x right)), biết (m = 1).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí