

Giải bài 7 trang 75 vở thực hành Toán 7>
Bài 7. Cho tam giác ABC và điểm D nằm trên cạnh BC sao cho AD vuông góc với BC và AD là phân giác góc BAC. Chứng minh rằng \(\Delta ABC\)cân tại A.
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Bài 7. Cho tam giác ABC và điểm D nằm trên cạnh BC sao cho AD vuông góc với BC và AD là phân giác góc BAC. Chứng minh rằng \(\Delta ABC\)cân tại A.
Phương pháp giải - Xem chi tiết
Tam giác cân là tam giác có hai cạnh bằng nhau.
Lời giải chi tiết
GT |
\(\Delta ABC\), \(D \in BC,AD \bot BC,\widehat {BAD} = \widehat {CAD}\) |
KL |
\(\Delta ABC\)cân tại A. |
Hai tam giác ADB và ADC cùng vuông tại D và có:
AD là cạnh chung
\(\widehat {BAD} = \widehat {CAD}\)(theo giả thiết)
Vậy \(\Delta ADB = \Delta ADC\)(cạnh góc vuông – góc nhọn).
Do đó AB = AC hay \(\Delta ABC\)cân tại A.


- Giải bài 8 trang 75 vở thực hành Toán 7
- Giải bài 6 (4.28) trang 75 vở thực hành Toán 7
- Giải bài 5 (4.27) trang 74 vở thực hành Toán 7
- Giải bài 4 (4.26) trang 74 vở thực hành Toán 7
- Giải bài 3 (4.25) trang 73 vở thực hành Toán 7
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục