 Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                                                
                            Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                         Bài 10. Căn bậc ba và căn thức bậc ba trang 62, 63, 64 ..
                                                        Bài 10. Căn bậc ba và căn thức bậc ba trang 62, 63, 64 ..
                                                    Giải bài 7 trang 65 vở thực hành Toán 9>
Sử dụng định nghĩa căn bậc ba, chứng minh rằng (sqrt[3]{{7 + 5sqrt 2 }} = sqrt 2 + 1).
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Sử dụng định nghĩa căn bậc ba, chứng minh rằng \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2 + 1\).
Phương pháp giải - Xem chi tiết
Căn bậc ba của số thực a là số thực x thỏa mãn \({x^3} = a\) (kí hiệu là \(\sqrt[3]{a}\)).
Lời giải chi tiết
Theo định nghĩa, \(\sqrt[3]{{7 + 5\sqrt 2 }}\) là một số thực x thỏa mãn \({x^3} = 7 + 5\sqrt 2 \).
Vì vậy, để chứng minh \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2 + 1\) chỉ cần chứng tỏ \({\left( {\sqrt 2 + 1} \right)^3} = 7 + 5\sqrt 2 \)
Thật vậy áp dụng hằng đẳng thức \({\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\) ta có:
\({\left( {\sqrt 2 + 1} \right)^3} = {\left( {\sqrt 2 } \right)^3} + 3{\left( {\sqrt 2 } \right)^2} + 3\sqrt 2 + 1 \\= 2\sqrt 2 + 6 + 3\sqrt 2 + 1 = 7 + 5\sqrt 2 \)
Vậy \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2 + 1\).
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 6 trang 64 vở thực hành Toán 9
- Giải bài 5 trang 64 vở thực hành Toán 9
- Giải bài 4 trang 64 vở thực hành Toán 9
- Giải bài 3 trang 64 vở thực hành Toán 9
- Giải bài 2 trang 63 vở thực hành Toán 9
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            