 Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                                                
                            Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                         Bài 10. Căn bậc ba và căn thức bậc ba trang 62, 63, 64 ..
                                                        Bài 10. Căn bậc ba và căn thức bậc ba trang 62, 63, 64 ..
                                                    Giải bài 5 trang 64 vở thực hành Toán 9>
Rút gọn và tính giá trị của biểu thức (sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}}) tại (x = 7).
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Rút gọn và tính giá trị của biểu thức \(\sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}}\) tại \(x = 7\).
Phương pháp giải - Xem chi tiết
Ta có \({\left( {\sqrt[3]{A}} \right)^3} = \sqrt[3]{{{A^3}}} = A\) với A là một biểu thức đại số.
Lời giải chi tiết
Vì \(27{x^3} - 27{x^2} + 9x - 1 \)
\(= {\left( {3x} \right)^3} - 3.{\left( {3x} \right)^2}.1 + 3.3x{.1^2} - {1^3}\)
\(= {\left( {3x - 1} \right)^3}\) nên
\(\sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}} = \sqrt[3]{{{{\left( {3x - 1} \right)}^3}}} = 3x - 1\)
Giá trị căn thức tại \(x = 7\) là \(3.7 - 1 = 20\).
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 6 trang 64 vở thực hành Toán 9
- Giải bài 7 trang 65 vở thực hành Toán 9
- Giải bài 4 trang 64 vở thực hành Toán 9
- Giải bài 3 trang 64 vở thực hành Toán 9
- Giải bài 2 trang 63 vở thực hành Toán 9
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            