 Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                                                
                            Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                         Luyện tập chung trang 65 trang 65, 66, 67 Vở thực hành ..
                                                        Luyện tập chung trang 65 trang 65, 66, 67 Vở thực hành ..
                                                    Giải bài 1 trang 65 vở thực hành Toán 9>
Rút gọn các biểu thức sau: a) (frac{{5 + 3sqrt 5 }}{{sqrt 5 }} - frac{1}{{sqrt 5 - 2}}); b) (sqrt {{{left( {sqrt 7 - 2} right)}^2}} - sqrt {63} + frac{{sqrt {56} }}{{sqrt 2 }}); c) (frac{{sqrt {{{left( {sqrt 3 + sqrt 2 } right)}^2}} + sqrt {{{left( {sqrt 3 - sqrt 2 } right)}^2}} }}{{2sqrt {12} }}); d) (frac{{sqrt[3]{{{{left( {sqrt 2 + 1} right)}^3}}} - 1}}{{sqrt {50} }}).
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Rút gọn các biểu thức sau:
a) \(\frac{{5 + 3\sqrt 5 }}{{\sqrt 5 }} - \frac{1}{{\sqrt 5 - 2}}\);
b) \(\sqrt {{{\left( {\sqrt 7 - 2} \right)}^2}} - \sqrt {63} + \frac{{\sqrt {56} }}{{\sqrt 2 }}\);
c) \(\frac{{\sqrt {{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}} + \sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} }}{{2\sqrt {12} }}\);
d) \(\frac{{\sqrt[3]{{{{\left( {\sqrt 2 + 1} \right)}^3}}} - 1}}{{\sqrt {50} }}\).
Phương pháp giải - Xem chi tiết
Khi rút gọn biểu thức có chứa căn thức bậc hai, ta cần phối hợp các phép tính (cộng, trừ, nhân, chia) và các phép biến đổi đã học (đưa thừa số ra ngoài hoặc vào trong dấu căn; khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu).
Lời giải chi tiết
a) \(\frac{{5 + 3\sqrt 5 }}{{\sqrt 5 }} - \frac{1}{{\sqrt 5 - 2}} = \frac{5}{{\sqrt 5 }} + \frac{{3\sqrt 5 }}{{\sqrt 5 }} - \frac{{\sqrt 5 + 2}}{{\left( {\sqrt 5 - 2} \right)\left( {\sqrt 5 + 2} \right)}}\)
\( = \sqrt 5 + 3 - \frac{{\sqrt 5 + 2}}{{5 - 4}} = 1\)
b) \(\sqrt {{{\left( {\sqrt 7 - 2} \right)}^2}} - \sqrt {63} + \frac{{\sqrt {56} }}{{\sqrt 2 }} \)
\(= \left| {\sqrt 7 - 2} \right| - \sqrt {9.7} + \sqrt {\frac{{56}}{2}} \\= \sqrt 7 - 2 - 3\sqrt 7 + 2\sqrt 7 \\= - 2;\)
c) \(\frac{{\sqrt {{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}} + \sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} }}{{2\sqrt {12} }}= \frac{{\sqrt 3 + \sqrt 2 + \left| {\sqrt 3 - \sqrt 2 } \right|}}{{2.2\sqrt 3 }} \)
\(= \frac{{\sqrt 3 + \sqrt 2 + \sqrt 3 - \sqrt 2 }}{{4\sqrt 3 }} = \frac{1}{2};\)
d) \(\frac{{\sqrt[3]{{{{\left( {\sqrt 2 + 1} \right)}^3}}} - 1}}{{\sqrt {50} }}= \frac{{\sqrt 2 + 1 - 1}}{{5\sqrt 2 }} = \frac{1}{5}\)
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 2 trang 66 vở thực hành Toán 9
- Giải bài 3 trang 66 vở thực hành Toán 9
- Giải bài 4 trang 67 vở thực hành Toán 9
- Giải bài 5 trang 67 vở thực hành Toán 9
- Giải bài 6 trang 67 vở thực hành Toán 9
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            