Giải bài 2 trang 66 vở thực hành Toán 9>
Tính giá trị của các biểu thức sau: a) (3sqrt {45} + frac{{5sqrt {15} }}{{sqrt 3 }} - 2sqrt {245} ); b) (frac{{sqrt {12} - sqrt 4 }}{{sqrt 3 - 1}} - frac{{sqrt {21} + sqrt 7 }}{{sqrt 3 + 1}} + sqrt 7 ); c) (frac{{3 - sqrt 3 }}{{1 - sqrt 3 }} + sqrt 3 left( {2sqrt 3 - 1} right) + sqrt {12} ); d) (frac{{sqrt 3 - 1}}{{sqrt 2 }} + frac{{sqrt 2 }}{{sqrt 3 - 1}} - frac{6}{{sqrt 6 }}).
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Tính giá trị của các biểu thức sau:
a) \(3\sqrt {45} + \frac{{5\sqrt {15} }}{{\sqrt 3 }} - 2\sqrt {245} \);
b) \(\frac{{\sqrt {12} - \sqrt 4 }}{{\sqrt 3 - 1}} - \frac{{\sqrt {21} + \sqrt 7 }}{{\sqrt 3 + 1}} + \sqrt 7 \);
c) \(\frac{{3 - \sqrt 3 }}{{1 - \sqrt 3 }} + \sqrt 3 \left( {2\sqrt 3 - 1} \right) + \sqrt {12} \);
d) \(\frac{{\sqrt 3 - 1}}{{\sqrt 2 }} + \frac{{\sqrt 2 }}{{\sqrt 3 - 1}} - \frac{6}{{\sqrt 6 }}\).
Phương pháp giải - Xem chi tiết
Khi tính giá trị biểu thức có chứa căn thức bậc hai, ta cần phối hợp các phép tính (cộng, trừ, nhân, chia) và các phép biến đổi đã học (đưa thừa số ra ngoài hoặc vào trong dấu căn; khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu).
Lời giải chi tiết
a) \(3\sqrt {45} + \frac{{5\sqrt {15} }}{{\sqrt 3 }} - 2\sqrt {245} \)
\(= 3.\sqrt {{3^2}.5} + 5\sqrt {\frac{{15}}{3}} - 14\sqrt 5 \\= 9\sqrt 5 + 5\sqrt 5 - 14\sqrt 5 = 0\)
b) \(\frac{{\sqrt {12} - \sqrt 4 }}{{\sqrt 3 - 1}} - \frac{{\sqrt {21} + \sqrt 7 }}{{\sqrt 3 + 1}} + \sqrt 7 \)
\(= \frac{{\sqrt 4 \left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 - 1}} - \frac{{\sqrt 7 \left( {\sqrt 3 + 1} \right)}}{{\sqrt 3 + 1}} + \sqrt 7 \\= 2 - \sqrt 7 + \sqrt 7 = 2\)
c) \(\frac{{3 - \sqrt 3 }}{{1 - \sqrt 3 }} + \sqrt 3 \left( {2\sqrt 3 - 1} \right) + \sqrt {12} \)
\(= \frac{{\sqrt 3 \left( {\sqrt 3 - 1} \right)}}{{1 - \sqrt 3 }} + 3.2 - \sqrt 3 + 2\sqrt 3 \\= - \sqrt 3 + 6 + \sqrt 3 = 6\)
d) \(\frac{{\sqrt 3 - 1}}{{\sqrt 2 }} + \frac{{\sqrt 2 }}{{\sqrt 3 - 1}} - \frac{6}{{\sqrt 6 }} \)
\(= \frac{{\left( {\sqrt 3 - 1} \right)\sqrt 2 }}{{\sqrt 2 .\sqrt 2 }} + \frac{{\sqrt 2 \left( {\sqrt 3 + 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}} - \sqrt 6 \\= \frac{{\sqrt 6 - \sqrt 2 }}{2} + \frac{{\sqrt 6 + \sqrt 2 }}{2} - \sqrt 6 = 0\).
- Giải bài 3 trang 66 vở thực hành Toán 9
- Giải bài 4 trang 67 vở thực hành Toán 9
- Giải bài 5 trang 67 vở thực hành Toán 9
- Giải bài 6 trang 67 vở thực hành Toán 9
- Giải bài 1 trang 65 vở thực hành Toán 9
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay