Giải bài 6 trang 77 sách bài tập toán 12 - Chân trời sáng tạo


Cho hai vectơ (overrightarrow a = left( { - 3;4;0} right)) và (overrightarrow b = left( {5;0;12} right)). Côsin của góc giữa hai vectơ (overrightarrow a ) và (overrightarrow b ) bằng A. (frac{3}{{13}}). B. (frac{5}{6}). C. ( - frac{5}{6}). D. ( - frac{3}{{13}}).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Cho hai vectơ \(\overrightarrow a  = \left( { - 3;4;0} \right)\) và \(\overrightarrow b  = \left( {5;0;12} \right)\). Côsin của góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) bằng

A. \(\frac{3}{{13}}\).

B. \(\frac{5}{6}\).

C. \( - \frac{5}{6}\).

D. \( - \frac{3}{{13}}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính góc giữa hai vectơ \(\overrightarrow u  = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v  = \left( {{x_2};{y_2};{z_2}} \right)\):

\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\).

Lời giải chi tiết

\(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{ - 3.5 + 4.0 + 0.12}}{{\sqrt {{{\left( { - 3} \right)}^2} + {4^2} + {0^2}} .\sqrt {{5^2} + {0^2} + {{12}^2}} }} =  - \frac{3}{{13}}\).

Chọn D.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí