Giải bài 6 trang 17 sách bài tập toán 12 - Chân trời sáng tạo


Một chất điểm chuyển động theo phương ngang có toạ độ xác định bởi phương trình \(x\left( t \right) = - 0,01{t^4} + 0,12{t^3} + 0,3{t^2} + 0,5\) với \(x\) tính bằng mét, \(t\) tính bằng giây, \(0 \le t \le 6\). Tìm thời điểm mà tốc độ của chất điểm lớn nhất.

Quảng cáo

Đề bài

Một chất điểm chuyển động theo phương ngang có toạ độ xác định bởi phương trình \(x\left( t \right) =  - 0,01{t^4} + 0,12{t^3} + 0,3{t^2} + 0,5\) với \(x\) tính bằng mét, \(t\) tính bằng giây, \(0 \le t \le 6\). Tìm thời điểm mà tốc độ của chất điểm lớn nhất.

Phương pháp giải - Xem chi tiết

Tìm \(v\left( t \right) = x'\left( t \right)\), tìm giá trị lớn nhất của hàm số \(v\left( t \right)\) trên đoạn \(\left[ {0;6} \right]\).

Lời giải chi tiết

Ta có: \(v\left( t \right) = x'\left( t \right) =  - 0,04{t^3} + 0,36{t^2} + 0,6t\).

Xét hàm số \(v\left( t \right) =  - 0,04{t^3} + 0,36{t^2} + 0,6t\) trên đoạn \(\left[ {0;6} \right]\).

Ta có: \(v'\left( t \right) =  - 0,12{t^2} + 0,72t + 0,6\)

\(f'\left( x \right) = 0 \Leftrightarrow x = 3 + \sqrt {14} \) (loại) hoặc \(x = 3 - \sqrt {14} \) (loại).

\(f\left( 0 \right) = 0;f\left( 6 \right) = 7,92\)

Vậy \(\mathop {\max }\limits_{\left[ {0;6} \right]} v\left( t \right) = v\left( 6 \right) = 7,92\).

Vậy tại thời điểm \(t = 6\) giây thì tốc độ của chất điểm lớn nhất.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí