Giải bài 4 trang 17 sách bài tập toán 12 - Chân trời sáng tạo>
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) (y = frac{{4{{rm{x}}^2} - 2{rm{x}} + 9}}{{2{rm{x}} - 1}}) trên khoảng (left( {1; + infty } right)); b) (y = frac{{{x^2} - 2}}{{2{rm{x}} + 1}}) trên nửa khoảng (left[ {0; + infty } right)); c) (y = frac{{9{{rm{x}}^2} + 3{rm{x}} + 7}}{{3{rm{x}} - 1}}) trên nửa khoảng (left( {frac{1}{3};5} right]); d) (y = frac{{2{{rm{x}}^2} + 3{rm{x}} - 3}}{{2{rm{x}} + 5}}) trên đoạn (left[ { - 2;4} right]
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) \(y = \frac{{4{{\rm{x}}^2} - 2{\rm{x}} + 9}}{{2{\rm{x}} - 1}}\) trên khoảng \(\left( {1; + \infty } \right)\);
b) \(y = \frac{{{x^2} - 2}}{{2{\rm{x}} + 1}}\) trên nửa khoảng \(\left[ {0; + \infty } \right)\);
c) \(y = \frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 7}}{{3{\rm{x}} - 1}}\) trên nửa khoảng \(\left( {\frac{1}{3};5} \right]\);
d) \(y = \frac{{2{{\rm{x}}^2} + 3{\rm{x}} - 3}}{{2{\rm{x}} + 5}}\) trên đoạn \(\left[ { - 2;4} \right]\).
Phương pháp giải - Xem chi tiết
• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):
Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.
Bước 2. Tính \(f\left( a \right);f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right);f\left( b \right)\).
Bước 3. Gọi \(M\) là số lớn nhất và \(m\) là số nhỏ nhất trong các giá trị tìm được ở Bước 2. Khi đó: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\).
• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng hay nửa khoảng bằng đạo hàm:
‒ Lập bảng biến thiên của hàm số trên tập hợp đó.
‒ Căn cứ vào bảng biến thiên, kết luận giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số.
Lời giải chi tiết
a) Xét hàm số \(y = f\left( x \right) = \frac{{4{{\rm{x}}^2} - 2{\rm{x}} + 9}}{{2{\rm{x}} - 1}}\) trên khoảng \(\left( {1; + \infty } \right)\).
Ta có:
\(\begin{array}{l}f'\left( x \right) = \frac{{{{\left( {4{{\rm{x}}^2} - 2{\rm{x}} + 9} \right)}^\prime }\left( {2{\rm{x}} - 1} \right) - \left( {4{{\rm{x}}^2} - 2{\rm{x}} + 9} \right){{\left( {2{\rm{x}} - 1} \right)}^\prime }}}{{{{\left( {2{\rm{x}} - 1} \right)}^2}}}\\ = \frac{{\left( {8{\rm{x}} - 2} \right)\left( {2{\rm{x}} - 1} \right) - \left( {4{{\rm{x}}^2} - 2{\rm{x}} + 9} \right).2}}{{{{\left( {2{\rm{x}} - 1} \right)}^2}}} = \frac{{8{{\rm{x}}^2} - 8{\rm{x}} - 16}}{{{{\left( {2{\rm{x}} - 1} \right)}^2}}}\end{array}\)
\(f'\left( x \right) = 0 \Leftrightarrow x = 2\) hoặc \(x = - 1\) (loại).
Bảng biến thiên của hàm số trên khoảng \(\left( {1; + \infty } \right)\):
Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left( {1; + \infty } \right)} f\left( x \right) = f\left( 2 \right) = 7\), hàm số không có giá trị lớn nhất trên \(\left( {1; + \infty } \right)\).
b) Xét hàm số \(y = f\left( x \right) = \frac{{{x^2} - 2}}{{2{\rm{x}} + 1}}\) trên nửa khoảng \(\left[ {0; + \infty } \right)\).
Ta có:
\(\begin{array}{l}f'\left( x \right) = \frac{{{{\left( {{x^2} - 2} \right)}^\prime }\left( {2{\rm{x}} + 1} \right) - \left( {{x^2} - 2} \right){{\left( {2{\rm{x}} + 1} \right)}^\prime }}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}} = \frac{{2{\rm{x}}\left( {2{\rm{x}} + 1} \right) - \left( {{x^2} - 2} \right).2}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}}\\ = \frac{{2{{\rm{x}}^2} + 2{\rm{x}} + 4}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}} = \frac{{2{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{7}{2}}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}} > 0,\forall x \in \left[ {0; + \infty } \right)\\\end{array}\)
\(f'\left( x \right) = 0 \Leftrightarrow x = 2\) hoặc \(x = - 1\) (loại).
Bảng biến thiên của hàm số trên khoảng \(\left[ {0; + \infty } \right)\):
Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left[ {0; + \infty } \right)} f\left( x \right) = f\left( 0 \right) = - 2\), hàm số không có giá trị lớn nhất trên \(\left[ {0; + \infty } \right)\).
c) Xét hàm số \(y = f\left( x \right) = \frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 7}}{{3{\rm{x}} - 1}}\) trên nửa khoảng \(\left( {\frac{1}{3};5} \right]\).
Ta có:
\(\begin{array}{l}f'\left( x \right) = \frac{{{{\left( {9{{\rm{x}}^2} + 3{\rm{x}} + 7} \right)}^\prime }\left( {3{\rm{x}} - 1} \right) - \left( {9{{\rm{x}}^2} + 3{\rm{x}} + 7} \right){{\left( {3{\rm{x}} - 1} \right)}^\prime }}}{{{{\left( {3{\rm{x}} - 1} \right)}^2}}}\\ = \frac{{\left( {18{\rm{x}} + 3} \right)\left( {3{\rm{x}} - 1} \right) - \left( {9{{\rm{x}}^2} + 3{\rm{x}} + 7} \right).3}}{{{{\left( {3{\rm{x}} - 1} \right)}^2}}} = \frac{{27{{\rm{x}}^2} - 18{\rm{x}} - 24}}{{{{\left( {3{\rm{x}} - 1} \right)}^2}}}\\\end{array}\)
\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{4}{3}\) hoặc \(x = - \frac{2}{3}\) (loại).
Bảng biến thiên của hàm số trên nửa khoảng \(\left( {\frac{1}{3};5} \right]\):
Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left( {\frac{1}{3};5} \right]} f\left( x \right) = f\left( {\frac{4}{3}} \right) = 9\), hàm số không có giá trị lớn nhất trên nửa khoảng \(\left( {\frac{1}{3};5} \right]\).
d) Xét hàm số \(y = f\left( x \right) = \frac{{2{{\rm{x}}^2} + 3{\rm{x}} - 3}}{{2{\rm{x}} + 5}}\) trên đoạn \(\left[ { - 2;4} \right]\).
Ta có:
\(\begin{array}{l}f'\left( x \right) = \frac{{{{\left( {2{{\rm{x}}^2} + 3{\rm{x}} - 3} \right)}^\prime }\left( {2{\rm{x}} + 5} \right) - \left( {2{{\rm{x}}^2} + 3{\rm{x}} - 3} \right){{\left( {2{\rm{x}} + 5} \right)}^\prime }}}{{{{\left( {2{\rm{x}} + 5} \right)}^2}}}\\ = \frac{{\left( {4{\rm{x}} + 3} \right)\left( {2{\rm{x}} + 5} \right) - \left( {2{{\rm{x}}^2} + 3{\rm{x}} - 3} \right).2}}{{{{\left( {2{\rm{x}} + 5} \right)}^2}}} = \frac{{4{{\rm{x}}^2} + 20{\rm{x}} + 21}}{{{{\left( {2{\rm{x}} + 5} \right)}^2}}}\\\end{array}\)
\(f'\left( x \right) = 0 \Leftrightarrow x = - \frac{3}{2}\) hoặc \(x = - \frac{7}{2}\) (loại).
\(f\left( { - 2} \right) = \frac{{11}}{9};f\left( { - \frac{3}{2}} \right) = - \frac{3}{2};f\left( 4 \right) = \frac{{41}}{{13}}\)
Vậy \(\mathop {\max }\limits_{\left[ { - 2;4} \right]} f\left( x \right) = f\left( 4 \right) = \frac{{41}}{{13}},\mathop {\min }\limits_{\left[ { - 2;4} \right]} f\left( x \right) = f\left( { - \frac{3}{2}} \right) = - \frac{3}{2}\).
- Giải bài 5 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 8 trang 18 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 9 trang 18 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo