Giải bài 5.33 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1


Cho đường tròn (O), đường thẳng a tiếp xúc với (O) tại A, đường thẳng b tiếp xúc với (O) tại B sao cho a//b. Gọi C là một điểm tùy ý thuộc (O), khác A và B. Tiếp tuyến c của (O) tại C cắt a và b lần lượt tại M và N. a) Chứng minh AB là một đường kính của (O). b) Gọi D, P và Q lần lượt là các điểm đối xứng với C, M và N qua tâm O. Chứng minh rằng (D in left( O right),P in b) và (Q in a). c) Chứng minh rằng PQ tiếp xúc với (O) tại D. d) Chứng minh tứ giác MNPQ là một hình thoi.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Cho đường tròn (O), đường thẳng a tiếp xúc với (O) tại A, đường thẳng b tiếp xúc với (O) tại B sao cho a//b. Gọi C là một điểm tùy ý thuộc (O), khác A và B. Tiếp tuyến c của (O) tại C cắt a và b lần lượt tại M và N.

a) Chứng minh AB là một đường kính của (O).

b) Gọi D, P và Q lần lượt là các điểm đối xứng với C, M và N qua tâm O. Chứng minh rằng \(D \in \left( O \right),P \in b\) và \(Q \in a\).

c) Chứng minh rằng PQ tiếp xúc với (O) tại D.

d) Chứng minh tứ giác MNPQ là một hình thoi.

Phương pháp giải - Xem chi tiết

a) + Chứng minh \(a \bot OA\), \(b \bot OB\) mà a//b nên ba điểm O, A, B thẳng hàng.

+  Lại có: \(OA = OB\) (bán kính của (O)). Do đó, AB là một đường kính của (O).

b) + Chứng minh D thuộc (O).

+ Chứng minh tứ giác AMBP là hình bình hành, suy ra BP//AM, suy ra BP//a. Mà b//a nên đường thẳng \(BP \equiv b\). Khi đó, P thuộc b.

+ Chứng minh tương tự ta có Q thuộc a.

c) + Chứng minh \(\Delta COM = \Delta DOP\left( {c.g.c} \right)\), suy ra \(\widehat {PDO} = \widehat {MCO} = {90^o}\).

+ Chứng minh \(\Delta CON = \Delta DOQ\left( {c.g.c} \right)\), suy ra \(\widehat {QDO} = \widehat {NCO} = {90^o}\).

+ Chứng minh \(\widehat {QDP} = {180^o}\).  Suy ra, ba điểm P, D, Q thẳng hàng và PQ là tiếp tuyến của (O) tại D.

d) + Chứng minh tứ giác MNPQ là hình bình hành.

+ Chứng minh \(\widehat {AOM} = \widehat {MOC} = \frac{1}{2}\widehat {AOC}\), \(\widehat {BON} = \widehat {NOC} = \frac{1}{2}\widehat {BOC}\) nên \(\widehat {MOC} + \widehat {NOC} = {90^o}\) nên MP vuông góc với NQ tại O.

+ Hình bình hành MNPQ có đường chéo MP vuông góc với NQ tại O. Do đó, MNPQ là hình thoi.

Lời giải chi tiết

a) Vì a tiếp xúc với (O) tại A hay a là tiếp tuyến của (O) tại A. Do đó, \(a \bot OA\).

Vì b tiếp xúc với (O) tại B hay b là tiếp tuyến của (O) tại B. Do đó, \(b \bot OB\).

Lại có: a//b. Do đó, ba điểm O, A, B thẳng hàng.

Vì \(OA = OB\) nên AB là đường kính của (O).

b) Vì C thuộc (O) và D đối xứng với C qua O nên do tính đối xứng của đường tròn, suy ra D thuộc (O).

Tứ giác AMBP có: \(OA = OB\), \(OM = OP\) (P đối xứng với M qua O) nên tứ giác AMBP là hình bình hành, suy ra BP//AM. Vì M, A thuộc đường thẳng a nên BP//a.

Mà b//a nên đường thẳng \(BP \equiv b\). Khi đó, P thuộc b.

Chứng minh tương tự ta có Q thuộc a. 

c) Tam giác COM và tam giác DOP có: \(OM = OP,OC = OD\) (vì D đối xứng với C qua O), \(\widehat {MOC} = \widehat {POD}\) (hai góc đối đỉnh) nên \(\Delta COM = \Delta DOP\left( {c.g.c} \right)\), suy ra \(\widehat {PDO} = \widehat {MCO} = {90^o}\).

Tương tự ta có: \(\Delta CON = \Delta DOQ\left( {c.g.c} \right)\), suy ra \(\widehat {QDO} = \widehat {NCO} = {90^o}\).

Ta có: \(\widehat {PDO} + \widehat {QDO} = \widehat {QDP} = {180^o}\) nên ba điểm P, D, Q thẳng hàng và PQ là tiếp tuyến của (O) tại D.

d) Tứ giác MNPQ có hai đường chéo MP và NQ cắt nhau tại trung điểm O của mỗi đường nên MNPQ là hình bình hành.

Vì MA và MC là hai tiếp tuyến cắt nhau tại M của (O) nên OM là tia phân giác của góc AOC.

Do đó, \(\widehat {AOM} = \widehat {MOC} = \frac{1}{2}\widehat {AOC}\).

Vì NB và NC là hai tiếp tuyến cắt nhau tại N của (O) nên ON là tia phân giác của góc BOC.

Do đó, \(\widehat {BON} = \widehat {NOC} = \frac{1}{2}\widehat {BOC}\).

Ta có:

\(\widehat {MOC} + \widehat {NOC} = \frac{1}{2}\left( {\widehat {AOC} + \widehat {BOC}} \right) \\= \frac{1}{2}{.180^o} = {90^o}.\)

Suy ra \(\widehat {MON} = {90^0}\) nên MP\( \bot \) NQ tại O.

Hình bình hành MNPQ có đường chéo MP vuông góc với NQ tại O.

Do đó, MNPQ là hình thoi.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 5.34 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1

    Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài với nhau tại A, hai điểm (B in left( O right)) và (C in left( {O'} right)) sao cho B và C nằm cùng phía đối với đường thẳng OO’ và OB//O’C. a) Chứng minh góc BAC là góc vuông. b) Cho biết (R = 3cm), (R' = 1cm) và BC cắt OO’ tại D. Tính độ dài đoạn OD.

  • Giải bài 5.35 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1

    Cho đường tròn tâm O, đường kính MN. Một đường tròn (N) cắt (O) tại A và B. a) Chứng minh rằng MA và MB là hai tiếp tuyến của (N). b) Đường thẳng qua N và vuông góc với NA cắt MB tại C. Chứng minh hai điểm M và N đối xứng với nhau qua OC. c) Đường thẳng qua M và vuông góc với MA cắt NB tại D. Chứng minh ba điểm O, C và D thẳng hàng.

  • Giải bài 5.32 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1

    Cho tam giác ABC vuông tại A, đường cao AH. Từ B và từ C kẻ hai đường thẳng tiếp xúc với đường tròn (A; AH) lần lượt tại D và E. Chứng minh rằng: a) Hai điểm D và E đối xứng với nhau qua A; b) DE tiếp xúc với đường tròn đường kính BC.

  • Giải bài 5.31 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1

    Từ điểm P nằm ngoài đường tròn (O), kẻ hai tiếp tuyến PA và PB đến đường tròn (A và B là hai tiếp điểm). a) Chứng minh rằng (PO bot AB). b) Gọi C là điểm đối xứng với A qua O. Chứng minh rằng BC//PO. c) Tính độ dài các cạnh của tam giác PAB, biết OA=3cm và OP=5cm.

  • Giải bài 5.30 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1

    Cho tam giác vuông ABC ((widehat A = {90^o})) có (widehat C = {30^o}) và AB=3cm. Đường phân giác của góc B cắt AC tại D. a) Chứng minh rằng đường tròn (D; DA) tiếp xúc với cạnh BC. b) Tính độ dài cung nằm trong góc BDC của đường tròn (D; DA) và diện tích hình quạt tròn tương ứng với cung ấy. c) Tính diện tích hình vành khuyên tạo bởi hai đường tròn (D; DA) và (D; DC).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí