Giải Bài 53 trang 57 sách bài tập toán 7 tập 1 - Cánh diều>
Tìm một số tự nhiên có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1; 2; 3.
Tổng hợp đề thi giữa kì 1 lớp 7 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Tìm một số tự nhiên có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1; 2; 3.
Phương pháp giải - Xem chi tiết
Ta tìm số đó dựa vào điều kiện đề bài đã cho: chia hết cho 18 tức số đó chia hết cho cả 2 và 9; và áp dụng tính chất của dãy tỉ số bằng nhau
Lời giải chi tiết
Gọi ba chữ số của số tự nhiên cần tìm là a, b, c (\( a,b,c\in N; 0 \le a,b,c \le 9\)).
Khi đó: \(\left\{ \begin{array}{l}\left[ \begin{array}{l}a \ne 0\\b \ne 0\\c \ne 0\end{array} \right.\\1 \le a + b + c \le 27\end{array} \right.\).
Vì số tự nhiên này chia hết cho 18 nên nó chia hết cho cả 2 và 9.
Do số đó chia hết cho 9 nên tổng các chữ số của nó chia hết cho 9 hay \(a + b + c{\rm{ }} \vdots {\rm{ }}9 \to \left[ \begin{array}{l}a + b + c = 9\\a + b + c = 18\\a + b + c = 27\end{array} \right.\) .
Mặt khác, các chữ số của nó tỉ lệ với 1; 2; 3 nên:
\(\dfrac{a}{1} = \dfrac{b}{2} = \dfrac{c}{3} = \dfrac{{a + b + c}}{{1 + 2 + 3}} = \dfrac{{a + b + c}}{6}\).
Mà a, b, c là các số tự nhiên nên \(a + b + c{\rm{ }} \vdots {\rm{ 6 }} \Rightarrow a + b + c = 18\).
Suy ra: \(\dfrac{a}{1} = \dfrac{b}{2} = \dfrac{c}{3} = \dfrac{{a + b + c}}{6} = \dfrac{{18}}{6} = 3\).
Do đó: \(\left\{ \begin{array}{l}a = 3{\rm{ }}.{\rm{ }}1 = 3\\b = 3{\rm{ }}.{\rm{ }}2 = 6\\c = 3{\rm{ }}.{\rm{ }}3 = 9\end{array} \right.\).
Mà số tự nhiên này chia hết cho 2 nên hàng đơn vị là 6.
Vậy số cần tìm là 396 hoặc 936.
- Giải Bài 54 trang 57 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 52 trang 57 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 51 trang 56 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 50 trang 56 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 49 trang 56 sách bài tập toán 7 tập 1 - Cánh diều
>> Xem thêm