Giải bài 50 trang 66 sách bài tập toán 12 - Cánh diều


Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai điểm (Mleft( {0; - 1;1} right)) và (Nleft( {4;1;5} right)). a) Mặt cầu đường kính (MN) có tâm là trung điểm của đoạn thẳng (MN). b) Nếu (I) là trung điểm của (MN) thì (Ileft( {2;0;6} right)). c) Bán kính của mặt cầu đường kính (MN) bằng 3. d) Phương trình mặt cầu đường kính (MN) là: ({left( {x - 2} right)^2} + {rm{ }}{y^2} + {left( {z - 3} right)^2} = 9).

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).

Cho hai điểm \(M\left( {0; - 1;1} \right)\) và \(N\left( {4;1;5} \right)\).

a) Mặt cầu đường kính \(MN\) có tâm là trung điểm của đoạn thẳng \(MN\).

b) Nếu \(I\) là trung điểm của \(MN\) thì \(I\left( {2;0;6} \right)\).

c) Bán kính của mặt cầu đường kính \(MN\) bằng 3.

d) Phương trình mặt cầu đường kính \(MN\) là: \({\left( {x - 2} \right)^2} + {\rm{ }}{y^2} + {\left( {z - 3} \right)^2} = 9\).

Phương pháp giải - Xem chi tiết

‒ Để viết phương trình mặt cầu, ta tìm tâm và bán kính mặt cầu.

‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Mặt cầu đường kính \(MN\) có tâm là trung điểm của đoạn thẳng \(MN\). Vậy a) đúng.

Nếu \(I\) là trung điểm của \(MN\) thì \(I\left( {\frac{{0 + 4}}{2};\frac{{ - 1 + 1}}{2};\frac{{1 + 5}}{2}} \right)\) hay \(I\left( {2;0;3} \right)\). Vậy b) sai.

Bán kính của mặt cầu đó bằng:

\(R = IM = \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( {\left( { - 1} \right) - 0} \right)}^2} + {{\left( {1 - 3} \right)}^2}}  = 3\).

Vậy c) đúng.

Vậy phương trình mặt cầu đó là:

\({\left( {x - 2} \right)^2} + {\rm{ }}{y^2} + {\left( {z - 3} \right)^2} = {3^2}\) hay \({\left( {x - 2} \right)^2} + {\rm{ }}{y^2} + {\left( {z - 3} \right)^2} = 9\).

Vậy d) đúng.

a) Đ.

b) S.

c) Đ.

d) Đ.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 51 trang 66 sách bài tập toán 12 - Cánh diều

    Cho mặt cầu \(\left( S \right)\) có phương trình: \({x^2} + {\left( {y + 4} \right)^2} + {\left( {z + 5} \right)^2} = 49\). a) Xác định toạ độ tâm \({\rm{I}}\) và tính bán kính \({\rm{R}}\) của mặt cầu \(\left( S \right)\). b) Điểm \(A\left( {0;3; - 5} \right)\) có thuộc mặt cầu \(\left( S \right)\) hay không? c) Điểm \(B\left( {1; - 4; - 1} \right)\) nằm trong hay nằm ngoài mặt cầu \(\left( S \right)\)? d) Điểm \(C\left( {7;3; - 5} \right)\) nằm trong hay nằm ngoài mặt cầu \(\left( S \rig

  • Giải bài 52 trang 67 sách bài tập toán 12 - Cánh diều

    Lập phương trình mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau: a) \(\left( S \right)\) có tâm \(I\left( {3; - 4;5} \right)\) bán kính 9. b) \(\left( S \right)\) có tâm \(K\left( { - 4;6;7} \right)\) và đi qua điểm \(H\left( { - 5;4;5} \right)\). c) \(\left( S \right)\) có đường kính \(AB\) với \(A\left( {1;3; - 1} \right)\) và \(B\left( { - 1; - 1; - 5} \right)\).

  • Giải bài 53 trang 67 sách bài tập toán 12 - Cánh diều

    Cho mặt cầu \(\left( S \right)\) có tâm \(O\left( {0;0;0} \right)\) và bán kính 2. a) Lập phương trình mặt cầu \(\left( S \right)\). b) Lấy các điểm \(A\left( {1;0; - 1} \right)\) và \(B\left( {1;1;0} \right)\). Lập phương trình đường thẳng \(AB\). Tìm toạ độ các điểm \(C\) và \(D\) là giao điểm của đường thẳng \(AB\) và mặt cầu \(\left( S \right)\).

  • Giải bài 54 trang 67 sách bài tập toán 12 - Cánh diều

    Tại một thời điểm có bão, khi đặt hệ trục toạ độ (Oxyz) (đơn vị trên mỗi trục là kilômét) ở một vị trí phù hợp thì tâm bão có toạ độ (left( {300;200;1} right)) (Hình 6). a) Lập phương trình mặt cầu để mô tả ranh giới bên ngoài vùng ảnh hưởng của bão ở cấp độ: bán kính gió mạnh từ cấp 10, giật từ cấp 12 trở lên khoảng 100 km tính từ tâm bão. b) Tại một vị trí có toạ độ (left( {350;245;1} right)) thì có bị ảnh hưởng bởi cơn bão được mô tả ở câu a hay không?

  • Giải bài 49 trang 66 sách bài tập toán 12 - Cánh diều

    Cho hai điểm \(A\left( { - 12;3;7} \right)\) và \(B\left( { - 10; - 1;5} \right)\). Mặt cầu đường kính \(AB\) có phương trình là: A. \({\left( {x + 11} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 6\). B. \({\left( {x + 11} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = \sqrt {24} \). C. \({\left( {x + 11} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 36\). D. \({\left( {x - 11} \right)^2} + {\left( {y + 1} \right)^2}

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí