Giải bài 3 trang 10 sách bài tập toán 12 - Chân trời sáng tạo


Xét tính đơn điệu và tìm cực trị của các hàm số: a) (y = frac{{3{rm{x}} + 1}}{{{rm{x}} - 2}}); b) (y = frac{{2{rm{x}} - 5}}{{3{rm{x}} + 1}}); c) (y = sqrt {4 - {x^2}} ); d) (y = x - ln {rm{x}}).

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Xét tính đơn điệu và tìm cực trị của các hàm số:

a) \(y = \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}}\);

b) \(y = \frac{{2{\rm{x}} - 5}}{{3{\rm{x}} + 1}}\);

c) \(y = \sqrt {4 - {x^2}} \);

d) \(y = x - \ln {\rm{x}}\).

Phương pháp giải - Xem chi tiết

Các bước để xét tính đơn điệu và tìm cực trị của hàm số \(f\left( x \right)\):

Bước 1. Tìm tập xác định \(D\) của hàm số.

Bước 2. Tính đạo hàm \(f'\left( x \right)\) của hàm số. Tìm các điểm \({x_1},{x_2},...,{x_n} \in D\) mà tại đó đạo hàm \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.

Bước 3. Sắp xếp các điểm \({x_1},{x_2},...,{x_n}\) theo thứ tự tăng dần, xét dấu \(f'\left( x \right)\) và lập bảng biến thiên.

Bước 4. Nêu kết luận về các khoảng đồng biến, nghịch biến, cực trị của hàm số.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) Xét hàm số \(y = \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}}\).

Tập xác định: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).

Ta có \(y' = \frac{{ - 7}}{{{{\left( {{\rm{x}} - 2} \right)}^2}}} < 0\).

Do đó hàm số nghịch biến trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\). Hàm số không có cực trị.

b) Xét hàm số \(y = \frac{{2{\rm{x}} - 5}}{{3{\rm{x}} + 1}}\).

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\).

Ta có \(y' = \frac{{17}}{{{{\left( {3{\rm{x}} + 1} \right)}^2}}} > 0\).

Do đó hàm số đồng biến trên các khoảng \(\left( { - \infty ; - \frac{1}{3}} \right)\) và \(\left( { - \frac{1}{3}; + \infty } \right)\).

Hàm số không có cực trị.

c) Xét hàm số \(y = \sqrt {4 - {x^2}} \).

Tập xác định: \(D = \left[ { - 2;2} \right]\).

Ta có \(y' = \frac{{{{\left( {4 - {x^2}} \right)}^\prime }}}{{2\sqrt {4 - {x^2}} }} = \frac{{ - 2{\rm{x}}}}{{2\sqrt {4 - {x^2}} }} = \frac{{ - x}}{{\sqrt {4 - {x^2}} }};y' = 0 \Leftrightarrow x = 0\).

Bảng biến thiên:

Hàm số đồng biến trên khoảng \(\left( { - 2;0} \right)\), nghịch biến trên khoảng \(\left( {0;2} \right)\).

Hàm số đạt cực đại tại $x=0,{{y}_{CĐ}}=2$.

d) Xét hàm số \(y = x - \ln {\rm{x}}\).

Tập xác định: \(D = \left( {0; + \infty } \right)\).

Ta có \(y' = 1 - \frac{1}{x};y' = 0 \Leftrightarrow x = 1\).

Bảng biến thiên:

Hàm số đồng biến trên khoảng \(\left( {0;1} \right)\), nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).

Hàm số đạt cực tiểu tại \(x = 1,{y_{CT}} = 1\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí