Giải bài 1 trang 10 sách bài tập toán 12 - Chân trời sáng tạo


Tìm các khoảng đơn điệu và cực trị của các hàm số có đồ thị cho ở Hình 3.

Đề bài

Tìm các khoảng đơn điệu và cực trị của các hàm số có đồ thị cho ở Hình 3.

Phương pháp giải - Xem chi tiết

Dựa vào đồ thị hàm số.

Lời giải chi tiết

Hình 3a: Hàm số \(y = f\left( x \right)\) đồng biến trên các khoảng \(\left( { - 6; - 4} \right)\) và \(\left( { - 1;3} \right)\), nghịch biến trên các khoảng \(\left( { - 4; - 1} \right)\) và \(\left( {3;6} \right)\).

Hàm số \(y = f\left( x \right)\) có:

• \(x =  - 1\) là điểm cực tiểu vì \(f\left( x \right) > f\left( { - 1} \right)\) với mọi \(x \in \left( { - 4;0} \right)\backslash \left\{ { - 1} \right\},{y_{CT}} = f\left( { - 1} \right) = 2\).

• \(x = 3\) là điểm cực đại vì \(f\left( x \right) < f\left( 3 \right)\) với mọi $x\in \left( 0;6 \right)\backslash \left\{ 3 \right\}, {{y}_{CĐ}}=f\left( 3 \right)=6$.

Hình 3b: Hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( { - 3;3} \right)\), nghịch biến trên các khoảng \(\left( { - 6; - 3} \right)\) và \(\left( {3;6} \right)\).

Hàm số \(y = g\left( x \right)\) có:

• \(x =  - 3\) là điểm cực tiểu vì \(g\left( x \right) > g\left( { - 3} \right)\) với mọi \(x \in \left( { - 6;0} \right)\backslash \left\{ { - 3} \right\},{y_{CT}} = g\left( { - 3} \right) =  - 1\).

• \(x = 3\) là điểm cực đại vì \(g\left( x \right) < g\left( 3 \right)\) với mọi $x\in \left( 0;6 \right)\backslash \left\{ 3 \right\},{{y}_{CĐ}}=g\left( 3 \right)=4$.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 2 trang 10 sách bài tập toán 12 - Chân trời sáng tạo

    Xét tính đơn điệu và tìm cực trị của các hàm số: a) (y = - {x^3} - 3{x^2} + 24x - 1); b) (y = {x^3} - 8{x^2} + 5x + 2); c) (y = {x^3} + 2{x^2} + 3x + 1); d) (y = - 3{x^3} + 3{x^2} - x + 2).

  • Giải bài 3 trang 10 sách bài tập toán 12 - Chân trời sáng tạo

    Xét tính đơn điệu và tìm cực trị của các hàm số: a) (y = frac{{3{rm{x}} + 1}}{{{rm{x}} - 2}}); b) (y = frac{{2{rm{x}} - 5}}{{3{rm{x}} + 1}}); c) (y = sqrt {4 - {x^2}} ); d) (y = x - ln {rm{x}}).

  • Giải bài 4 trang 10 sách bài tập toán 12 - Chân trời sáng tạo

    Xét tính đơn điệu và tìm cực trị của các hàm số: a) (y = frac{{{x^2} + 8}}{{x + 1}}); b) (y = frac{{{x^2} - 8x + 10}}{{x - 2}}); c) (y = frac{{ - 2{x^2} + x + 2}}{{2x - 1}}); d) (y = frac{{ - {x^2} - 6x - 25}}{{x + 3}}).

  • Giải bài 5 trang 10 sách bài tập toán 12 - Chân trời sáng tạo

    Tìm (m) để a) Hàm số (y = frac{{2{rm{x}} + m}}{{{rm{x}} - 1}}) đồng biến trên từng khoảng xác định. b) Hàm số (y = frac{{ - {x^2} + 3{rm{x}} + m}}{{{rm{x}} + 2}}) nghịch biến trên từng khoảng xác định.

  • Giải bài 6 trang 11 sách bài tập toán 12 - Chân trời sáng tạo

    Đạo hàm (f'left( x right)) của hàm số (y = fleft( x right)) có đồ thị như Hình 4. Xét tính đơn điệu và tìm các điểm cực trị của hàm số (y = fleft( x right)).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí