Giải bài 2.1 trang 43 sách bài tập toán 12 - Kết nối tri thức


Cho hình chóp tứ giác S.ABCD. Trong các vectơ có điểm đầu và điểm cuối phân biệt thuộc tập \(\left\{ S,A,B,C,D \right\}\): a) Các vectơ nào có điểm đầu là S? b) Những vectơ nào có giá nằm trong mặt phẳng (SAB)? c) Vectơ nào là vectơ đối của vectơ \(\overrightarrow {BC} \)?

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho hình chóp tứ giác S.ABCD. Trong các vectơ có điểm đầu và điểm cuối phân biệt thuộc tập \(\left\{ S,A,B,C,D \right\}\):

a) Các vectơ nào có điểm đầu là S?

b) Những vectơ nào có giá nằm trong mặt phẳng (SAB)?

c) Vectơ nào là vectơ đối của vectơ \(\overrightarrow {BC} \)?

Phương pháp giải - Xem chi tiết

Ý a: Trong các điểm đã cho, liệt kê các vectơ được tạo thành từ điểm S và một điểm trong các điểm còn lại.

Ý b: Tương tự như ý a, liệt kê các vectơ được tạo thành từ hai trong ba điểm \(\left\{ {S,A,B} \right\}\).

Ý c: Hiểu khái niệm vectơ đối.

Lời giải chi tiết

a) Các vectơ có điểm đầu là S là \(\overrightarrow {SA} ,{\rm{ }}\overrightarrow {SB} ,{\rm{ }}\overrightarrow {SC} ,{\rm{ }}\overrightarrow {SD} \).

b) Những vectơ có giá nằm trong mặt phẳng (SAB) là \(\overrightarrow {SA} ,{\rm{ }}\overrightarrow {SB} ,{\rm{ }}\overrightarrow {AB} ,{\rm{ }}\overrightarrow {AS} ,{\rm{ }}\overrightarrow {BS} ,{\rm{ }}\overrightarrow {BA} \).

c) Vectơ đối của vectơ \(\overrightarrow {BC} \) là \(\overrightarrow {CB} \).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 2.2 trang 44 sách bài tập toán 12 - Kết nối tri thức

    Cho hình hộp ABCD.A’B’C’D’. Trong các vectơ có điểm đầu và điểm cuối là hai đỉnh phân biệt của hình hộp: a) Vectơ nào cùng phương với vectơ \(\overrightarrow {AC} \)? b) Vectơ nào bằng vectơ \(\overrightarrow {AD'} \)? c) Những vectơ nào là vectơ đối của vectơ \(\overrightarrow {AA'} \)?

  • Giải bài 2.3 trang 44 sách bài tập toán 12 - Kết nối tri thức

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có (AB = AD = 1) và (AA' = 2). Tính độ dài của các vectơ sau: a) (overrightarrow {BD} )?; b) (overrightarrow {CD'} )? ; c) (overrightarrow {AC'} )?.

  • Giải bài 2.4 trang 44 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian, cho năm điểm phân biệt A, B, C, D, E. Chứng minh rằng: a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AE} - \overrightarrow {DE} \); b) \(\overrightarrow {AB} + \overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {BD} \); c) \(\overrightarrow {BC} + \overrightarrow {DE} = \overrightarrow {BE} - \overrightarrow {CD} \).

  • Giải bài 2.5 trang 44 sách bài tập toán 12 - Kết nối tri thức

    Cho tứ diện ABCD. Gọi E, F là các điểm thuộc các cạnh AB, CD sao cho (AE = frac{1}{3}AB) và (CF = frac{1}{3}CD). Chứng minh rằng: a) (overrightarrow {EF} = overrightarrow {AD} - frac{1}{3}overrightarrow {AB} - frac{2}{3}overrightarrow {CD} ); b) (overrightarrow {EF} = overrightarrow {BC} + frac{2}{3}overrightarrow {AB} + frac{1}{3}overrightarrow {CD} ); c) (overrightarrow {EF} = frac{1}{3}overrightarrow {AD} + frac{2}{3}overrightarrow {BC} + frac{1}{3}ov

  • Giải bài 2.6 trang 44 sách bài tập toán 12 - Kết nối tri thức

    Cho tứ diện ABCD. Gọi M ,N lần lượt là trung điểm của các cạnh BC, BD . Gọi E, F lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng: a) (overrightarrow {EF} = frac{2}{3}overrightarrow {MN} ); b) (overrightarrow {EF} = frac{1}{3}overrightarrow {CD} ).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí