

Giải bài 4.39 trang 20 sách bài tập toán 12 - Kết nối tri thức>
Cho (S) là diện tích phần hình phẳng được tô màu như Hình 4.7. Khi đó diện tích (S) là A. (S = intlimits_a^b {left| {fleft( x right) - gleft( x right)} right|dx} ). B. (S = intlimits_a^m {left| {fleft( x right) - gleft( x right)} right|dx} + intlimits_m^b {left| {gleft( x right) - fleft( x right)} right|dx} ). C. (S = intlimits_a^m {left| {fleft( x right)} right|dx} + intlimits_m^b {left| {gleft( x right)} right|dx} ). D. (S = i
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho \(S\) là diện tích phần hình phẳng được tô màu như Hình 4.7.
Khi đó diện tích \(S\) là
A. \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
B. \(S = \int\limits_a^m {\left| {f\left( x \right) - g\left( x \right)} \right|dx} + \int\limits_m^b {\left| {g\left( x \right) - f\left( x \right)} \right|dx} \).
C. \(S = \int\limits_a^m {\left| {f\left( x \right)} \right|dx} + \int\limits_m^b {\left| {g\left( x \right)} \right|dx} \).
D. \(S = \int\limits_a^m {\left| {g\left( x \right)} \right|dx} + \int\limits_m^b {\left| {f\left( x \right)} \right|dx} \).
Phương pháp giải - Xem chi tiết
Xét hình phẳng đang cần tìm diện tích, ta chia hình thành hai hình nhỏ và tính diện tích từng hình. \({S_1}\) là diện tích hình phẳng được giới hạn bởi đồ thị \(y = f\left( x \right)\), trục \(Ox\), đường thẳng \(x = a,x = m\) và \({S_2}\) là diện tích hình phẳng được giới hạn bởi đồ thị \(y = g\left( x \right)\), trục \(Ox\), đường thẳng \(x = m,x = b\). Áp dụng công thức tính diện tích ứng dụng tích phân đã học.
Lời giải chi tiết
Từ hình vẽ ta thấy \(S = {S_1} + {S_2}\), trong đó \({S_1}\) là diện tích hình phẳng được giới hạn bởi đồ thị \(y = f\left( x \right)\), trục \(Ox\), đường thẳng \(x = a,x = m\) và \({S_2}\) là diện tích hình phẳng được giới hạn bởi đồ thị \(y = g\left( x \right)\), trục \(Ox\), đường thẳng \(x = m,x = b\).
Ta có \({S_1} = \int\limits_a^m {\left| {f\left( x \right)} \right|dx} \) và \({S_2} = \int\limits_m^b {\left| {g\left( x \right)} \right|dx} \) suy ra \(S = \int\limits_a^m {\left| {f\left( x \right)} \right|dx} + \int\limits_m^b {\left| {g\left( x \right)} \right|dx} \).
Chọn C


- Giải bài 4.40 trang 20 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.41 trang 21 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.42 trang 21 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.43 trang 21 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.44 trang 21 sách bài tập toán 12 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 4.39 trang 20 sách bài tập toán 12 - Kết nối tri thức
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 42 trang 55 sách bài tập toán 12 - Kết nối tri thức