Giải bài 4.36 trang 19 sách bài tập toán 12 - Kết nối tri thức


Giá trị trung bình của hàm (fleft( x right)) trên (left[ {a;b} right]) được tính theo công thức (m = frac{1}{{b - a}}intlimits_a^b {fleft( x right)dx} ). Khi đó giá trị trung bình của hàm (fleft( x right) = {x^2} + 2x) trên đoạn (left[ {0;3} right]) là A. (frac{8}{3}). B. 18. C. 6. D. 5.

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Giá trị trung bình của hàm \(f\left( x \right)\) trên \(\left[ {a;b} \right]\) được tính theo công thức \(m = \frac{1}{{b - a}}\int\limits_a^b {f\left( x \right)dx} \). Khi đó giá trị trung bình của hàm  \(f\left( x \right) = {x^2} + 2x\) trên đoạn \(\left[ {0;3} \right]\) là

A. \(\frac{8}{3}\).

B. 18.

C. 6.

D. 5.

Phương pháp giải - Xem chi tiết

Áp dụng công thức giá trị trung bình \(m = \frac{1}{{b - a}}\int\limits_a^b {f\left( x \right)dx} \).

Lời giải chi tiết

Giá trị trung bình của hàm \(f\left( x \right) = {x^2} + 2x\) trên đoạn \(\left[ {0;3} \right]\) là

\(m = \frac{1}{{3 - 0}}\int\limits_0^3 {\left( {{x^2} + 2x} \right)dx}  = \frac{1}{3}\left. {\left( {\frac{{{x^3}}}{3} + {x^2}} \right)} \right|_0^3 = 6\).

Vậy ta chọn đáp án C.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí