Giải bài 2 trang 60 vở thực hành Toán 9


Đưa thừa số vào trong dấu căn: a) (4sqrt 3 ); b) ( - 2sqrt 7 ); c) (4sqrt {frac{{15}}{2}} ); d) ( - 5sqrt {frac{{16}}{5}} ).

Đề bài

Đưa thừa số vào trong dấu căn:

a) \(4\sqrt 3 \);

b) \( - 2\sqrt 7 \);

c) \(4\sqrt {\frac{{15}}{2}} \);

d) \( - 5\sqrt {\frac{{16}}{5}} \).

Phương pháp giải - Xem chi tiết

+ Nếu a là số âm và b là số không âm thì \(a\sqrt b  =  - \sqrt {{a^2}b} \).

+ Nếu a và b là hai số không âm thì \(a\sqrt b  = \sqrt {{a^2}b} \).

Lời giải chi tiết

a) \(4\sqrt 3  = \sqrt {{4^2}.3}  = \sqrt {48} \);

b) \( - 2\sqrt 7  =  - \sqrt {{2^2}.7}  =  - \sqrt {28} \);

c) \(4\sqrt {\frac{{15}}{2}}  = \sqrt {{4^2}.\frac{{15}}{2}}  = \sqrt {120} \);

d) \( - 5\sqrt {\frac{{16}}{5}}  =  - \sqrt {{5^2}.\frac{{16}}{5}}  =  - \sqrt {80} \).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 3 trang 60 vở thực hành Toán 9

    Khử mẫu trong dấu căn: a) (2a.sqrt {frac{3}{5}} ); b) ( - 3x.sqrt {frac{5}{x}} left( {x > 0} right)); c) ( - sqrt {frac{{3a}}{b}} left( {a ge 0,b > 0} right)).

  • Giải bài 4 trang 60 vở thực hành Toán 9

    Trục căn thức ở mẫu: a) (frac{{4 + 3sqrt 5 }}{{sqrt 5 }}); b) (frac{1}{{sqrt 5 - 2}}); c) (frac{{3 + sqrt 3 }}{{1 - sqrt 3 }}); d) (frac{{sqrt 2 }}{{sqrt 3 + sqrt 2 }}).

  • Giải bài 5 trang 61 vở thực hành Toán 9

    Rút gọn các biểu thức sau: a) (2sqrt {frac{2}{3}} - 4sqrt {frac{3}{2}} ); b) (frac{{5sqrt {48} - 3sqrt {27} + 2sqrt {12} }}{{sqrt 3 }}); c) (frac{1}{{3 + 2sqrt 2 }} + frac{{4sqrt 2 - 4}}{{2 - sqrt 2 }}).

  • Giải bài 6 trang 61 vở thực hành Toán 9

    Rút gọn biểu thức (A = sqrt x left( {frac{1}{{sqrt x + 3}} - frac{1}{{3 - sqrt x }}} right);;left( {x ge 0,x ne 9} right)).

  • Giải bài 7 trang 61 vở thực hành Toán 9

    Rút gọn biểu thức: a) (left( {frac{{7 - sqrt 7 }}{{1 - sqrt 7 }} + sqrt 3 } right)left( {frac{{7 + sqrt 7 }}{{1 + sqrt 7 }} + sqrt 3 } right)); b) (frac{{28}}{3}sqrt {frac{{27}}{{16}}} - 3.sqrt {frac{{49}}{3}} - frac{9}{4}.sqrt {frac{{48}}{{243}}} ).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí