Giải bài 2 trang 20 sách bài tập toán 12 - Chân trời sáng tạo>
Tính diện tích của hình phẳng được gạch chéo trong mỗi hình sau.
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Tính diện tích của hình phẳng được gạch chéo trong mỗi hình sau.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).
‒ Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của các hàm số \(y = f\left( x \right),y = g\left( x \right)\) và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Lời giải chi tiết
a) \(S = \int\limits_0^{\frac{{3\pi }}{2}} {\left| {\cos x} \right|dx} = \int\limits_0^{\frac{\pi }{2}} {\cos xdx} + \int\limits_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( { - \cos x} \right)dx} = \left. {\sin x} \right|_0^{\frac{\pi }{2}} - \left. {\sin x} \right|_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} = 3\).
b) \(S = \int\limits_0^2 {\left| {4 - {2^x}} \right|dx} = \int\limits_0^2 {\left( {4 - {2^x}} \right)dx} = \left. {\left( {4{\rm{x}} - \frac{{{2^x}}}{{\ln }}} \right)} \right|_0^2 = 8 - \frac{3}{{\ln 2}}\).
- Giải bài 3 trang 21 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 21 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 21 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 21 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 21 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo