Toán nâng cao lớp 5 - Bài tập toán nâng cao lớp 5 có lời giải Giải chuyên đề 5: Phân số Toán nâng cao lớp 5

Dạng 1: Tính nhanh dãy phân số có quy luật - Toán nâng cao lớp 5

Tải về

Cho phân số 56/81 Hỏi cùng thêm vào tử số và mẫu số bao nhiêu đơn vị để được phân số bằng 3/4. Một đội tự nguyện trường Nguyễn Tất thành đi trồng cây ở tỉnh Hà Giang trong 3 ngày.

Loại 1: Dãy phân số có quy luật mẫu số sau gấp mẫu số trước một số không đổi

Phương pháp giải

Giải sử biểu thức cần tìm là A. Các phân số có tử số bằng nhau và mẫu của phân số sau gấp mẫu số của phân số trước n lần.

Bước 1: Tính A x n

Bước 2: Tính A x n - A

Ví dụ 1:

Tính giá trị $A = \frac{1}{2}\,\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\, + \,\,\frac{1}{{64}}$

Phân tích: Nhận xét thấy mẫu số phân số sau hơn mẫu số phân số trước 2 lần. Như vậy khi ta nhân thêm 2 vào thì phân số phía sau sẽ trở thành phân số phía trước.

Bài giải:

$A = \frac{1}{2}\,\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\, + \,\,\frac{1}{{64}}$                      (1)

$2 \times A = 2 \times \left( {\frac{1}{2}\,\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\, + \,\,\frac{1}{{64}}} \right)$

$ = \frac{2}{2}\,\, + \,\,\frac{2}{4}\,\, + \,\,\,\frac{2}{8}\,\, + \,\,\frac{2}{{16}}\,\, + \,\,\frac{2}{{32}}\,\, + \,\,\frac{2}{{64}}$

$ = 1\,\, + \,\,\frac{1}{2}\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\,\,$                  (2)

Nhìn vào (1) và (2), chúng ta nhận thấy ở A và 2 x A có nhiều phân số giống nhau. Nếu ta trừ hai vế cho nhau thì được:

 $2 \times A - A$= $\left( {1\,\, + \,\,\frac{1}{2}\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\,\,} \right)\,\, - \,\,$$\left( {\frac{1}{2}\,\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\, + \,\,\frac{1}{{64}}} \right)$

  $A = $ 1 – $\frac{1}{{64}}$= $\frac{{63}}{{64}}$

 

 

Ví dụ 2:

Tính $A = \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}}$

 

Phân tích: Ở bài này, mẫu số sau gấp mẫu số trước 3 lần khi đó ta nhân biểu thức với 3 rồi trừ hai vế để triệt tiêu các phân số ở giữa.

 

Giải:

 

Ta có $A = \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}}$

 

$3 \times A = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}}$

 

Trừ hai vế ta có:

 

$3 \times A - A = (1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}}) - (\frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}})$

 

$2 \times A = 1 - \frac{1}{{729}} = \frac{{728}}{{729}}$

 

$A = \frac{{728}}{{729}}:2 = \frac{{364}}{{729}}$

 

 

Ví dụ 3:

Tính giá trị $A = \frac{2}{3} + \frac{2}{6} + \frac{2}{{12}} + \frac{2}{{24}} + ..... + \frac{2}{{768}}$

 

Ta thấy mẫu số của phân số sau gấp 2 lần mẫu số của phân số trước.

 

Ta có $2 \times A = 2 \times (\frac{2}{3} + \frac{2}{6} + \frac{2}{{12}} + \frac{2}{{24}} + .... + \frac{2}{{768}})$

 

 $2 \times A = \frac{4}{3} + \frac{2}{3} + \frac{2}{6} + \frac{2}{{12}} + .... + \frac{2}{{384}}$

 

$2 \times A - A = \left( {\frac{4}{3} + \frac{2}{3} + \frac{2}{6} + \frac{2}{{12}} + .... + \frac{2}{{384}}} \right) - \left( {\frac{2}{3} + \frac{2}{6} + \frac{2}{{12}} + \frac{2}{{24}} + .... + \frac{2}{{768}}} \right)$

 

$A = \frac{4}{3} - \frac{2}{{768}} = \frac{{511}}{{384}}$

 

Loại 2: Tính tổng của nhiều phân số có tử số là n (n > 0); mẫu số là tích của 2 thừa số có hiệu bằng n và thừa số thứ 2 của mẫu số phân số liền tr­ước là thừa số thứ nhất của mẫu số phân số liền sau

 

Phương pháp giải

Tử số bằng hiệu hai thừa số ở mẫu số. Ta tách như sau:

Ví dụ: $\frac{1}{{2 \times 3}} = \frac{{3 - 2}}{{2 \times 3}} = \frac{3}{{2 \times 3}} - \frac{2}{{2 \times 3}} = \frac{1}{2} - \frac{1}{3}$

            $\frac{2}{{3 \times 5}} = \frac{{5 - 3}}{{3 \times 5}} = \frac{5}{{3 \times 5}} - \frac{3}{{3 \times 5}} = \frac{1}{3} - \frac{1}{5}$

Ví dụ 1:

$A = \frac{1}{{2\,\, \times \,\,3}}\,\, + \,\,\frac{1}{{3\, \times \,4}}\,\, + \,\,\frac{1}{{4\, \times \,5}}\,\, + \,\frac{1}{{5\, \times \,6}}$

$A = \frac{{3\, - \,2}}{{2\,\, \times \,\,3}}\,\, + \,\,\frac{{4\, - \,3}}{{3\, \times \,4}}\,\, + \,\,\frac{{5\, - \,4}}{{4\, \times \,5}}\,\, + \,\frac{{6\, - \,5}}{{5\, \times \,6}}$

 = $\frac{3}{{2\,\, \times \,\,3}}\,\, - \,\,\frac{2}{{2\, \times \,3}}\,\, + \,\,\frac{4}{{3\, \times \,4}}\,\, - \frac{3}{{3\, \times \,4}} + \,\,\frac{5}{{4\, \times \,5}}\,\, - \,\,\frac{4}{{4\, \times \,5}} + \,\frac{6}{{5\, \times \,6}}\,\, - \,\,\frac{5}{{5\, \times \,6}}$

=  $\frac{1}{2}\,\, - \,\frac{1}{3}\,\, + \,\,\frac{1}{3}\,\, - \,\,\frac{1}{4}\,\, + \,\,\frac{1}{4}\,\, - \,\,\frac{1}{5}\,\, + \,\,\frac{1}{5}\,\, - \,\frac{1}{6}$

= \(\frac{1}{2} - \frac{1}{3} = \frac{1}{6}\)

 

 

Ví dụ 2:

 

$B = \frac{3}{{2 \times 5}} + \frac{3}{{5 \times 8}} + \frac{3}{{8 \times 11}} + \frac{3}{{11 \times 14}}$

 

$B = \frac{{5 - 2}}{{2 \times 5}} + \frac{{8 - 5}}{{5 \times 8}} + \frac{{11 - 8}}{{8 \times 11}} + \frac{{14 - 11}}{{11 \times 14}}$

 

$ = \frac{5}{{2 \times 5}} - \frac{2}{{2 \times 5}} + \frac{8}{{5 \times 8}} - \frac{5}{{5 \times 8}} + \frac{{11}}{{8 \times 11}} - \frac{8}{{8 \times 11}} + \frac{{14}}{{11 \times 14}} - \frac{{11}}{{11 \times 14}}$

 

$ = \frac{1}{2} - \frac{1}{5} + \frac{1}{5} - \frac{1}{8} + \frac{1}{8} - \frac{1}{{11}} + \frac{1}{{11}} - \frac{1}{{14}}$

 

$ = \frac{1}{2} - \frac{1}{{14}} = \frac{3}{7}$

Bài tập áp dụng


Bài 1 :

Tính giá trị$A = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{{16}} + \frac{1}{{32}} + .... + \frac{1}{{1024}}$

Bài 2 :

Tính giá trị\(A = \frac{1}{5} + \frac{1}{{10}} + \frac{1}{{20}} + \frac{1}{{40}} + \frac{1}{{80}} + \frac{1}{{160}} + \frac{1}{{320}}\)

Bài 3 :

Tính giá trị của$C = \frac{3}{2}\,\, + \,\,\frac{3}{8}\,\, + \,\,\frac{3}{{32}}\,\, + \,\,\frac{3}{{128}}\,\, + \,\,\frac{3}{{512}}$

Bài 4 :

Tính giá trị của $D = \frac{5}{2}\,\, + \frac{5}{6}\,\, + \,\,\frac{5}{{18}}\,\, + \,\,\frac{5}{{54}}\,\, + \,\,\frac{5}{{162}}\,\, + \,\,\frac{5}{{486}}$

Bài 5 :

Tính nhanh$B = \frac{4}{{3\, \times \,7}}\,\, + \,\,\frac{4}{{7\, \times \,11}}\,\, + \,\,\frac{4}{{11\, \times \,15}}\,\, + \,\frac{4}{{15\, \times \,19}}\,\, + \,\,\frac{4}{{19\, \times \,23}}\,\, + \,\frac{4}{{23\, \times \,27}}$

Bài 6 :

Tính nhanh$C = \frac{4}{{3\, \times \,6}}\,\, + \,\,\frac{4}{{6\, \times \,9}}\, + \,\frac{4}{{9\, \times \,12}}\, + \,\frac{4}{{12\, \times \,15}}$

Bài 7 :

Tính nhanh$D = \frac{7}{{1\, \times \,5}}\,\, + \,\,\frac{7}{{5\, \times \,9}}\,\, + \,\frac{7}{{9\, \times \,13}} + \,\frac{7}{{13\, \times \,17}}\, + \,\frac{7}{{17\, \times \,21}}$

Bài 8 :

Tính nhanh$E = \frac{1}{2} + \frac{1}{6} + \frac{1}{{12}} + \frac{1}{{20}} + \frac{1}{{30}} + \frac{1}{{42}} + .... + \frac{1}{{110}}$


Bình chọn:
4.6 trên 27 phiếu
Tải về

Luyện Bài Tập Trắc nghiệm Toán lớp 5 - Xem ngay

Tham Gia Group Dành Cho 2K14 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí