Chương VIII. Tam giác đồng dạng. Hình đồng dạng - SBT Toán 8 CD

Bình chọn:
4.9 trên 7 phiếu
Bài 60 trang 83 sách bài tập toán 8 – Cánh diều

Hình 54 cho biết \(A'B'=4,A'O=3,AO=6,OB=x,AB=y\) Giá trị của biểu thức \(x+y\) là:

Xem lời giải

Bài 54 trang 82 sách bài tập toán 8 – Cánh diều

Trong Hình 53, các điểm \(A,B,C,D\) lần lượt là các điểm nằm trên các đoạn thẳng \(IM,IN,IP,IQ\) sao cho

Xem lời giải

Bài 48 trang 79 sách bài tập toán 8 – Cánh diều

Cho hình bình hành \(ABCD\) \(\left( {AC > BD} \right)\). Từ \(C\) kẻ \(CE\) vuông góc với \(AB\) (\(E\) thuộc đường thẳng \(AB\)), \(CF\) vuông góc với \(AD\) (\(F\) thuộc đường thẳng \(AD\)).

Xem lời giải

Bài 41 trang 75 sách bài tập toán 8 – Cánh diều

Hình thang \(ABCD\) ở Hình 39 có \(AB//CD,AB < CD,\widehat {ABD} = 90^\circ \). Hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(G\).

Xem lời giải

Bài 35 trang 72 sách bài tập toán 8 – Cánh diều

Cho tam giác \(IKH\) và tam giác \(I'K'H'\) có \(\widehat {IKH} = 90^\circ ,\widehat {KHI} = 60^\circ ,\widehat {I'K'H'} = 90^\circ ,\widehat {K'I'H'} = 30^\circ \).

Xem lời giải

Bài 30 trang 70 sách bài tập toán 8 – Cánh diều

Cho hình vuông \(ABCD\) cạnh bằng \(a\). Lấy điểm \(E\) thuộc cạnh \(BC\), điểm \(F\) thuộc cạnh \(AD\) sao cho \(CE=AF\). Các đường thẳng \(AE,BF\) cắt đường thẳng \(DC\) lần lượt tại \(M\) và \(N\).

Xem lời giải

Bài 25 trang 68 sách bài tập toán 8 – Cánh diều

Một người đứng ở vị trí \(M\) trên cây cầu bắc qua con kênh quan sát ba điểm thẳng hàng \(A,B,D\) lần lươt là chân hai cột đèn trồng ở bờ kênh và chân cầu (Hình 26).

Xem lời giải

Bài 18 trang 66 sách bài tập toán 8 – Cánh diều

Cho hình chữ nhật \(ABCD\). Kẻ \(CH\) vuông góc với \(BD\left( {H \in BD} \right)\). Gọi \(I,K,M\) lần lượt là trung điểm của \(BH,CH,AD\). Chứng minh:

Xem lời giải

Bài 5 trang 60 sách bài tập toán 8 – Cánh diều

Cho tam giác \(ABC\) vuông ở \(A\). Vẽ ra phía ngoài tam giác đó các tam giác \(BAD\) vuông cân ở \(B\), \(ACF\) vuông cân ở \(C\).

Xem lời giải

Bài 61 trang 83 sách bài tập toán 8 – Cánh diều

Cho tam giác \(ABC\) có \(DE//BC\) (Hình 55). Khẳng định nào dưới đây đúng?

Xem lời giải

Bài 55 trang 82 sách bài tập toán 8 – Cánh diều

Cho tam giác \(ABC\) có \(AB=13,BC=14,CA=15\). Cho \(D,E\) là hai điểm phân biệt. a) Giả sử tam giác \(A'B'C'\) là hình đồng dạng phối cảnh của tam giác \(ABC\) với điểm \(D\) là tâm đồng dạng phối cảnh

Xem lời giải

Bài 49 trang 79 sách bài tập toán 8 – Cánh diều

Cho hình vuông \(ABCD\), gọi \(O\) là giao điểm của hai đường chéo, lấy \(G\) trên cạnh \(BC\), \(H\) trên cạnh \(CD\) sao cho \(\widehat {GOH} = 45^\circ \).

Xem lời giải

Bài 42 trang 76 sách bài tập toán 8 – Cánh diều

Cho tam giác \(ABC\) vuông ở \(A\) có \(AB = 3AC\) và điểm \(D\) thuộc cạnh \(AB\) sao cho \(AD = 2DB\). Chứng minh: \(\widehat {ADC} + \widehat {ABC} = 45^\circ \).

Xem lời giải

Bài 36 trang 72 sách bài tập toán 8 – Cánh diều

Quan sát Hình 32 có (widehat {BAC} = 90^circ ,widehat {BCD} = 90^circ ,DB = 10,8)cm, (BC = 7,2)cm và (CA = 4,8)cm. Chứng minh: (Delta DBCbacksim Delta BCA).

Xem lời giải

Bài 19 trang 66 sách bài tập toán 8 – Cánh diều

Cho tứ giác \(ABCD\) có \(AD = BC\). Đường thẳng đi qua trung điểm \(M\) và \(N\) lần lượt của các cạnh \(AB\) và \(CD\) cắt các đường thẳng \(AD\) và \(BC\) lần lượt tại \(E\) và \(F\). Chứng minh: \(\widehat {AEM} = \widehat {MFB}\).

Xem lời giải

Bài 6 trang 60 sách bài tập toán 8 – Cánh diều

Trong Hình 10, cho biết \(ABCD\) là hình thang, \(AB//CD\left( {AB < CD} \right)\); \(M\) là trung điểm của \(DC\); \(AM\) cắt \(BD\) ở \(I\); \(BM\) cắt \(AC\) ở \(K\); \(IK\) cắt \(AD,BC\) lần lượt ở \(E,F\). Chứng minh:

Xem lời giải

Bài 62 trang 84 sách bài tập toán 8 – Cánh diều

Cho tam giác (ABC) có (BD) là đường phân giác của góc (ABC) (Hình 56). Độ dài (DC) là:

Xem lời giải

Bài 43 trang 76 sách bài tập toán 8 – Cánh diều

Cho tam giác \(ABC\) có \(AB = 2\)cm, \(AC = 3\)cm, \(BC = 4\)cm. Chứng minh: \(\widehat {BAC} = \widehat {ABC} + 2\widehat {BCA}\).

Xem lời giải

Bài 20 trang 66 sách bài tập toán 8 – Cánh diều

Cho tứ giác \(ABCD\) có \(M,N\) lần lượt là trung điểm của \(AD,BC\). Chứng minh: \(MN \le \frac{{AB + DC}}{2}\). Dấu đẳng thức xảy ra khi nào?

Xem lời giải

Bài 7 trang 60 sách bài tập toán 8 – Cánh diều

Cho \(ABCD\) là hình bình hành. Một đường thẳng \(d\) đi qua \(A\) cắt \(BD,BC,DC\) lần lượt tại \(E,K,G\) (Hình 11). Chứng minh:

Xem lời giải

Xem thêm

Bài viết được xem nhiều nhất