Giải bài 70 trang 85 sách bài tập toán 8 – Cánh diều>
Cho tam giác \(ABC\) có ba góc nhọn, các đường cao \(BD\) và \(CE\) cắt nhau tại \(H\). Chứng minh:
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho tam giác \(ABC\) có ba góc nhọn, các đường cao \(BD\) và \(CE\) cắt nhau tại \(H\). Chứng minh:
a) \(\Delta EBH\backsim \Delta DCH,\Delta ADE\backsim \Delta ABC\);
b) \(DB\) là tia phân giác của góc \(EDI\), với \(I\) là giao điểm của \(AH\) và \(BC\).
Phương pháp giải - Xem chi tiết
Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:
\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).
Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).
Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.
Lời giải chi tiết
a) Vì các tam giác \(EBH\) và \(DCH\) đều là các tam giác vuông và \(\widehat{EBH}=\widehat{DHC}\) (hai góc đối đỉnh) nên \(\Delta EBH\backsim \Delta DCH\). Tương tự, ta có các tam giác \(ABH\) và \(ACE\) là các tam giác vuông và \(\widehat{BAD}=\widehat{CAE}\) nên \(\Delta ABH\backsim \Delta ACE\). Suy ra \(\frac{AB}{AC}=\frac{AD}{AE}\) hay \(\frac{AB}{AD}=\frac{AC}{AE}\). Mà \(\widehat{BAC}=\widehat{DAE}\) suy ra \(\Delta ADE\backsim \Delta ABC\).
b) Do \(\Delta ADE\backsim \Delta ABC\) nên \(\widehat{ADE}=\widehat{CBA}\) (1). Tương tự cách chứng minh ở câu a, ta có \(\Delta CDI\backsim \Delta CBA\) (2). Từ (1) và (2), ta có \(\widehat{ADE}=\widehat{CDI}\).
Do đó \(90{}^\circ -\widehat{ADE}=90{}^\circ -\widehat{CDI}\) hay \(\widehat{EDB}=\widehat{BDI}\). Vậy \(DB\) là đường phân giác của góc \(EDI\).


- Giải bài 71 trang 85 sách bài tập toán 8 – Cánh diều
- Giải bài 72 trang 85 sách bài tập toán 8 – Cánh diều
- Giải bài 73 trang 85 sách bài tập toán 8 – Cánh diều
- Giải bài 69 trang 85 sách bài tập toán 8 – Cánh diều
- Giải bài 68 trang 85 sách bài tập toán 8 – Cánh diều
>> Xem thêm