Giải bài 55 trang 82 sách bài tập toán 8 – Cánh diều


Cho tam giác \(ABC\) có \(AB=13,BC=14,CA=15\). Cho \(D,E\) là hai điểm phân biệt. a) Giả sử tam giác \(A'B'C'\) là hình đồng dạng phối cảnh của tam giác \(ABC\) với điểm \(D\) là tâm đồng dạng phối cảnh

Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho tam giác \(ABC\) có \(AB=13,BC=14,CA=15\). Cho \(D,E\) là hai điểm phân biệt.

a)      Giả sử tam giác \(A'B'C'\) là hình đồng dạng phối cảnh của tam giác \(ABC\) với điểm \(D\) là tâm đồng dạng phối cảnh, tỉ số \(\frac{A'B'}{AB}=\frac{4}{5}\). Tìm độ dài các canh của tam giác \(A'B'C'\).

b)     Giả sử tam giác \(A''B''C''\) là hình đồng dạng phối cảnh của tam giác \(ABC\) với điểm \(E\) là tâm đồng dạng phối cảnh, tỉ số \(\frac{A''B''}{AB}=\frac{4}{5}\). Tìm độ dài các cạnh của tam giác \(A''B''C''\).

c)      Chứng minh diện tích tam giác \(A'B'C'\) bằng diện tích tam giác \(A''B''C''\).

Phương pháp giải - Xem chi tiết

Dựa vào tỉ số vị tự để tìm độ dài các cạnh của tam giác \(A'B'C'\) và \(A''B''C''\).

Lời giải chi tiết

a)      \(A'B'=\frac{4.13}{5}=10,4;B'C'=\frac{4.14}{5}=11,2;C'A'=\frac{4.15}{5}=12.\)

b)     \(A''B''=\frac{4.13}{5}=10,,4;B''C''=\frac{4.14}{5}=11,2;C''A''=\frac{4.15}{5}=12\)

c)      Ta có \(\Delta A'B'C'=\Delta A''B''C''\) (c.c.c), suy ra diện tích tam giác \(A'B'C'\) bằng diện tích tam giác \(A''B''C''\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí