Bài 3 trang 99 SGK Hình học 10

Bình chọn:
3.2 trên 6 phiếu

Giải bài 3 trang 99 SGK Hình học 10. Cho tam giác đều ABC cạnh a

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác đều \(ABC\) cạnh \(a\)

LG a

Cho \(M\) là một điểm trên đường tròn ngoại tiếp tam giác \(ABC\). Tính \(MA^2+ MB^2+ MC^2\) theo \(a\)

Giải chi tiết:

 

Ta có:

\(\eqalign{
& \overrightarrow {MA} = \overrightarrow {OA} - \overrightarrow {OM} \cr 
& {\overrightarrow {MA} ^2} = {(\overrightarrow {OA} - \overrightarrow {OM} )^2}\cr&\;\;\;\;\;\;\;\;\;\, = {\overrightarrow {OA} ^2} + {\overrightarrow {OM} ^2} - 2\overrightarrow {OA} .\overrightarrow {OM} \cr 
& \Rightarrow {\overrightarrow {MA} ^2} = 2{R^2} - 2\overrightarrow {OA} .\overrightarrow {OM} (1) \cr} \)

Tương tự ta có:

\(\eqalign{
& M{B^2} = {\overrightarrow {MB} ^2} = 2{R^2} - 2\overrightarrow {OB} .\overrightarrow {OM} (2) \cr 
& M{C^2} = {\overrightarrow {MC} ^2} = 2{R^2} - 2\overrightarrow {OC.} \overrightarrow {OM} (3) \cr} \)

Từ (1), (2) và (3) suy ra:

 \(M{A^2} + M{B^2} + M{C^2}\)\( = 6{R^2} - 2\overrightarrow {OM} (\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} )\)

Tam giác \(ABC\) là tam giác đều nội tiếp đường tròn tâm \(O\) nên \(O\) cũng là trọng tâm của tam giác \(ABC\), cho ta \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} = \overrightarrow  0\)

Vậy \(M{A^2} + M{B^2} + M{C^2} = 6{R^2} \)

Vì đường tròn ngoại tiếp tam giác đều cạnh \(a\) nên ta có:

\(a = R\sqrt3   ⇒ 6R^2= 2(R\sqrt3)^2\)

Vậy  \(M{A^2} + M{B^2} + M{C^2}  = 2a^2\)

LG b

Cho đường thẳng \(a\) tùy ý, tìm điểm \(N\) trên đường thẳng \(d\) sao cho \(NA^2+ NB^2 + NC^2\) nhỏ nhất.

Giải chi tiết:

Gọi \(G\) là trọng tâm của tam giác ta có:

\(\eqalign{
& \overrightarrow {NA} = \overrightarrow {NG} + \overrightarrow {GA} \cr 
& \Rightarrow {\overrightarrow {NA} ^2} = {\overrightarrow {GA} ^2} + 2\overrightarrow {NG} .\overrightarrow {GA} + {\overrightarrow {GA} ^2} \cr} \)

Tương tự ta có:

\(\eqalign{
& {\overrightarrow {NB} ^2} = {\overrightarrow {NG} ^2} + 2\overrightarrow {NG} .\overrightarrow {GB} + {\overrightarrow {GB} ^2} \cr 
& {\overrightarrow {NC} ^2} = {\overrightarrow {NG} ^2} + 2\overrightarrow {NG} .\overrightarrow {GC} + {\overrightarrow {GC} ^2}  \cr} \) 

\(\Rightarrow N{A^2} + N{B^2} + N{C^2} \)\(= 3N{G^2} + 2\overrightarrow {NG} (\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} )\)\( + G{A^2} + G{B^2} + G{C^2}\)

Vì \(G\) là trọng tâm của tam giác

 \(⇒\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

\(\eqalign{
& {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2} = 3G{A^2} \cr&= 3.{({2 \over 3}.{{a\sqrt 3 } \over 2})^2} = {a^2} \cr 
& \Rightarrow N{A^2} + N{B^2} + N{C^2} = {a^2} + 3N{G^2} \cr} \)

\(a^2\) là số không đổi nên tổng \(N{A^2} + N{B^2} + N{C^2}\) nhỏ nhất khi \(NG\) đạt giá trị nhỏ nhất. Vì \(NG\) là khoảng cách từ \(G\) đến điểm \(N\) thuộc đường thẳng \(d\) nên \(NG\) nhỏ nhất khi \(NG⊥d\) hay \(N\) là hình chiếu của trọng tâm \(G\) trên đường thẳng \(d\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng