Bài 2 trang 98 SGK Hình học 10


Cho tam giác ABC có hai điểm M,N sao cho

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\) có hai điểm \(M,N\)  sao cho 

\(\left\{ \matrix{
\overrightarrow {AM} = \alpha \overrightarrow {AB} \hfill \cr 
\overrightarrow {AN} = \beta \overrightarrow {AC} \hfill \cr} \right.\)

LG a

Hãy vẽ \(\displaystyle M, N\) khi \(\displaystyle \alpha  = {2 \over 3};\beta  =  - {2 \over 3}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \overrightarrow {AM} = {2 \over 3}\overrightarrow {AB} \Leftrightarrow \left\{ \matrix{
\overrightarrow {AM} \uparrow \uparrow \overrightarrow {AB} \hfill \cr 
AM = {2 \over 3}AB \hfill \cr} \right. \cr 
& \overrightarrow {AN} = - {2 \over 3}\overrightarrow {AC} \Leftrightarrow \left\{ \matrix{
\overrightarrow {AN} \uparrow \downarrow \overrightarrow {AC} \hfill \cr 
AN = {2 \over 3}AC \hfill \cr} \right. \cr} \)

Vậy \(M\) thuộc đoạn \(AB\) sao cho \(AM = {2 \over 3}AB \) và \(N\) thuộc tia đối của tia \(AC\) sao cho \(AN = {2 \over 3}AC .\)

LG b

Hãy tìm mối liên hệ giữa \(α, β\) để \(MN//BC\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \beta \overrightarrow {AC} - \alpha \overrightarrow {AB} \\
\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \\
MN//BC \Leftrightarrow \dfrac{\beta }{1} = \dfrac{{ - \alpha }}{{ - 1}} \Leftrightarrow \beta = \alpha
\end{array}\)

Vậy \(MN//BC \Leftrightarrow \beta  = \alpha .\)

Loigiaihay.com


Bình chọn:
3.8 trên 5 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài