Phương trình \(\cos 11x\cos 3x = \cos 17x\cos 9x\) có nghiệm là:
-
A.
\(x = \dfrac{{k\pi }}{6},\,\,x = \dfrac{{k\pi }}{{10}}\).
-
B.
\(x = \dfrac{{k\pi }}{6},\,\,x = \dfrac{{k\pi }}{{20}}\).
-
C.
\(x = \dfrac{{k\pi }}{3},\,\,x = \dfrac{{k\pi }}{{20}}\).
-
D.
\(x = \dfrac{{k\pi }}{3},\,\,x = \dfrac{{k\pi }}{{10}}\).
Bước 1: Sử dụng công thức biến đổi tích thành tổng: \(\cos a\cos b = \dfrac{1}{2}\left[ {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right]\) để đưa về phương trình lượng giác cơ bản.
Bước 2: Giải phương trình lượng giác cơ bản: \(\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Bước 1:
$\cos 11x\cos 3x = \cos 17x\cos 9x$
\( \Leftrightarrow \dfrac{1}{2}.\left[ {\cos \left( {11x + 3x} \right) + \cos \left( {11x - 3x} \right)} \right]\)\( = \dfrac{1}{2}\left[ {\cos \left( {17x + 9x} \right) + \cos \left( {17x - 9x} \right)} \right]\)
$\Leftrightarrow \dfrac{1}{2}\left( {\cos 14x + \cos 8x} \right) = \dfrac{1}{2}\left( {\cos 26x + \cos 8x} \right)\\ \Leftrightarrow \cos 14x + \cos 8x = \cos 26x + \cos 8x\\ \Leftrightarrow \cos 14x = \cos 26x$
Bước 2:
\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}26x = 14x + k2\pi \\26x = - 14x + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}12x = k2\pi \\40x = k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{k\pi }}{6}\\x = \dfrac{{k\pi }}{{20}}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Vậy nghiệm của phương trình là \(x = \dfrac{{k\pi }}{6},\,\,x = \dfrac{{k\pi }}{{20}}\).
Đáp án : B
Các bài tập cùng chuyên đề
Với giá trị nào của \(m\) dưới đây thì phương trình \(\sin x = m\) có nghiệm?
Cho phương trình \(\sin x = \sin \alpha \). Chọn kết luận đúng.
Nghiệm của phương trình \(\sin x = - 1\) là:
Chọn mệnh đề sai:
Nghiệm của phương trình \(\sin x = \dfrac{1}{2}\) thỏa mãn $ - \dfrac{\pi }{2} \le x \le \dfrac{\pi }{2}$ là:
Số nghiệm của phương trình \(2\sin \left( {x + \dfrac{\pi }{4}} \right) - 2 = 0\) với \(\pi \le x \le 5\pi \) là:
Nghiệm của phương trình \(\sin x.\cos x = 0\) là:
Phương trình \(\cos 2x = 1\) có nghiệm là:
Chọn mệnh đề đúng:
Nghiệm của phương trình \(2\cos x - 1 = 0\) là:
Số nghiệm của phương trình \(\sqrt 2 \cos \left( {x + \dfrac{\pi }{3}} \right) = 1\) với \(0 \le x \le 2\pi \) là:
Nghiệm của phương trình \(\cos 3x = \cos x\) là:
Nghiệm của phương trình \({\sin ^2}x-\sin x = 0\) thỏa điều kiện: \(0 < x < \pi \).
Nghiệm của phương trình \(\sin 3x = \cos x\) là:
Nghiệm của phương trình \(\sqrt 3 \tan x + 3 = 0\) là:
Phương trình \(\tan \dfrac{x}{2} = \tan x\) có nghiệm:
Phương trình \(\sqrt 3 \cot \left( {5x - \dfrac{\pi }{8}} \right) = 0\) có nghiệm là:
Tập nghiệm của phương trình \(\tan x.\cot x = 1\) là:
Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là:
Phương trình \(\tan \left( {\dfrac{\pi }{2} - x} \right) + 2\tan \left( {2x + \dfrac{\pi }{2}} \right) = 1\) có nghiệm là: