Số nghiệm của phương trình \(\sqrt 2 \cos \left( {x + \dfrac{\pi }{3}} \right) = 1\) với \(0 \le x \le 2\pi \) là:
-
A.
\(0\)
-
B.
\(2\)
-
C.
\(1\)
-
D.
\(3\)
Biến đổi phương trình về dạng \(\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \)
Ta có: \(\sqrt 2 \cos \left( {x + \dfrac{\pi }{3}} \right) = 1 \) \(\Leftrightarrow \cos \left( {x + \dfrac{\pi }{3}} \right) = \dfrac{1}{{\sqrt 2 }} = \cos \dfrac{\pi }{4}\) \( \Leftrightarrow \left[ \begin{array}{l}x + \dfrac{\pi }{3} = \dfrac{\pi }{4} + k2\pi \\x + \dfrac{\pi }{3} = - \dfrac{\pi }{4} + k2\pi \end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{{12}} + k2\pi \\x = - \dfrac{{7\pi }}{{12}} + k2\pi \end{array} \right.\left( {k \in Z} \right)\)
Vì \(0 \le x \le 2\pi \) nên \(0 \le - \dfrac{\pi }{{12}} + k2\pi \le 2\pi \) \(\Leftrightarrow \dfrac{\pi }{{12}} \le k2\pi \le \dfrac{{25\pi }}{{12}} \) \(\Leftrightarrow \dfrac{1}{{24}} \le k \le \dfrac{{25}}{{24}} \Rightarrow k = 1\)
Và \(0 \le - \dfrac{{7\pi }}{{12}} + k2\pi \le 2\pi \) \( \Leftrightarrow \dfrac{{7\pi }}{{12}} \le k2\pi \le \dfrac{{31\pi }}{{12}} \) \(\Leftrightarrow \dfrac{7}{{24}} \le k \le \dfrac{{31}}{{24}} \Rightarrow k = 1\)
Vậy có hai nghiệm của phương trình trong khoảng \(\left[ {0;2\pi } \right]\).
Đáp án : B
Các bài tập cùng chuyên đề
Với giá trị nào của \(m\) dưới đây thì phương trình \(\sin x = m\) có nghiệm?
Cho phương trình \(\sin x = \sin \alpha \). Chọn kết luận đúng.
Nghiệm của phương trình \(\sin x = - 1\) là:
Chọn mệnh đề sai:
Nghiệm của phương trình \(\sin x = \dfrac{1}{2}\) thỏa mãn $ - \dfrac{\pi }{2} \le x \le \dfrac{\pi }{2}$ là:
Số nghiệm của phương trình \(2\sin \left( {x + \dfrac{\pi }{4}} \right) - 2 = 0\) với \(\pi \le x \le 5\pi \) là:
Nghiệm của phương trình \(\sin x.\cos x = 0\) là:
Phương trình \(\cos 2x = 1\) có nghiệm là:
Chọn mệnh đề đúng:
Nghiệm của phương trình \(2\cos x - 1 = 0\) là:
Nghiệm của phương trình \(\cos 3x = \cos x\) là:
Nghiệm của phương trình \({\sin ^2}x-\sin x = 0\) thỏa điều kiện: \(0 < x < \pi \).
Nghiệm của phương trình \(\sin 3x = \cos x\) là:
Nghiệm của phương trình \(\sqrt 3 \tan x + 3 = 0\) là:
Phương trình \(\tan \dfrac{x}{2} = \tan x\) có nghiệm:
Phương trình \(\sqrt 3 \cot \left( {5x - \dfrac{\pi }{8}} \right) = 0\) có nghiệm là:
Tập nghiệm của phương trình \(\tan x.\cot x = 1\) là:
Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là:
Phương trình \(\tan \left( {\dfrac{\pi }{2} - x} \right) + 2\tan \left( {2x + \dfrac{\pi }{2}} \right) = 1\) có nghiệm là:
Phương trình \(\cos 11x\cos 3x = \cos 17x\cos 9x\) có nghiệm là: