Phương trình \(\tan \left( {\dfrac{\pi }{2} - x} \right) + 2\tan \left( {2x + \dfrac{\pi }{2}} \right) = 1\) có nghiệm là:
-
A.
\(x = \dfrac{\pi }{4} + k2\pi \left( {k \in Z} \right)\)
-
B.
\(x = \dfrac{\pi }{4} + k\pi \left( {k \in Z} \right)\)
-
C.
\(x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\left( {k \in Z} \right)\)
-
D.
\(x = - \dfrac{\pi }{4} + k\pi \left( {k \in Z} \right)\)
Bước 1: Sử dụng giá trị lượng giác của các góc hơn kém nhau một góc \(\dfrac{\pi }{2}\)
$\tan \left( {\dfrac{\pi }{2} - x} \right) =\cot x$; $\tan \left( {2x + \dfrac{\pi }{2}} \right) =-\cot 2x$
Bước 2: Biến đổi phương trình và giải
+) Công thức nhân đôi \(\cot 2x = \dfrac{{1 - {{\tan }^2}x}}{{2\tan x}}\).
+) Sử dụng công thức $\tan x = \tan y \Leftrightarrow x = y+ k\pi \left( {k \in Z} \right)$
Bước 1:
Ta có: \(\tan \left( {\dfrac{\pi }{2} - x} \right) + 2\tan \left( {2x + \dfrac{\pi }{2}} \right) = 1 \)\(\Leftrightarrow \cot x - 2\cot 2x = 1\)
ĐK: \(\left\{ \begin{array}{l}\sin x \ne 0\\\sin 2x \ne 0\end{array} \right. \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow x \ne \dfrac{{k\pi }}{2}\)
Bước 2:
Khi đó phương trình tương đương:
\(\begin{array}{l}\cot x - 2\cot 2x = 1 \\ \Leftrightarrow \cot x - 2.\dfrac{{1 - {{\tan }^2}x}}{{2\tan x}} = 1 \\ \Leftrightarrow \cot x - \dfrac{{\tan x.\cot x - {{\tan }^2}x}}{{\tan x}} = 1\\ \Leftrightarrow \cot x - \left( {\cot x - \tan x} \right) = 1 \Leftrightarrow \tan x = 1 \Leftrightarrow x = \dfrac{\pi }{4} + k\pi \left( {k \in Z} \right)\left( {TMDK} \right)\end{array}\)
Đáp án : B
Các bài tập cùng chuyên đề
Với giá trị nào của \(m\) dưới đây thì phương trình \(\sin x = m\) có nghiệm?
Cho phương trình \(\sin x = \sin \alpha \). Chọn kết luận đúng.
Nghiệm của phương trình \(\sin x = - 1\) là:
Chọn mệnh đề sai:
Nghiệm của phương trình \(\sin x = \dfrac{1}{2}\) thỏa mãn $ - \dfrac{\pi }{2} \le x \le \dfrac{\pi }{2}$ là:
Số nghiệm của phương trình \(2\sin \left( {x + \dfrac{\pi }{4}} \right) - 2 = 0\) với \(\pi \le x \le 5\pi \) là:
Nghiệm của phương trình \(\sin x.\cos x = 0\) là:
Phương trình \(\cos 2x = 1\) có nghiệm là:
Chọn mệnh đề đúng:
Nghiệm của phương trình \(2\cos x - 1 = 0\) là:
Số nghiệm của phương trình \(\sqrt 2 \cos \left( {x + \dfrac{\pi }{3}} \right) = 1\) với \(0 \le x \le 2\pi \) là:
Nghiệm của phương trình \(\cos 3x = \cos x\) là:
Nghiệm của phương trình \({\sin ^2}x-\sin x = 0\) thỏa điều kiện: \(0 < x < \pi \).
Nghiệm của phương trình \(\sin 3x = \cos x\) là:
Nghiệm của phương trình \(\sqrt 3 \tan x + 3 = 0\) là:
Phương trình \(\tan \dfrac{x}{2} = \tan x\) có nghiệm:
Phương trình \(\sqrt 3 \cot \left( {5x - \dfrac{\pi }{8}} \right) = 0\) có nghiệm là:
Tập nghiệm của phương trình \(\tan x.\cot x = 1\) là:
Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là:
Phương trình \(\cos 11x\cos 3x = \cos 17x\cos 9x\) có nghiệm là: