Đề bài

Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là:

  • A.

    \(k\pi ,k \in Z\)

  • B.

    \(\dfrac{\pi }{4} + \dfrac{{k\pi }}{2},k \in Z\)

  • C.

    \(\dfrac{{k\pi }}{2},k \in Z\)  

  • D.

    Vô nghiệm

Phương pháp giải

- Tìm điều kiện xác định của phương trình.

- Sử dụng công thức \(\tan u.\cot u = 1\) để biến đổi phương trình về dạng phương trình lượng giác cơ bản $\tan x=\tan y$

- Giải phương trình $\tan x=\tan y$$ \Leftrightarrow x=y+k\pi$, $k \in \mathbb{Z}$

- Kiểm tra điều kiện và loại nghiệm.

Lời giải của GV Loigiaihay.com

ĐKXĐ: \(\left\{ \begin{array}{l}\cos 4x \ne 0\\\sin 2x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4x \ne \dfrac{\pi }{2} + k\pi \\2x \ne k\pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \dfrac{\pi }{8} + \dfrac{{k\pi }}{4}\\x \ne \dfrac{{k\pi }}{2}\end{array} \right.\)

Khi đó, dễ thấy \(\cot 2x \ne 0\) (Nếu \(\cot 2x = 0\) thì phương trình thành 0=1 =>Vô nghiệm) nên phương trình tương đương:

\(\tan 4x.\cot 2x = 1 \Leftrightarrow \tan 4x = \dfrac{1}{{\cot 2x}} \\ \Leftrightarrow \tan 4x = \tan 2x \Leftrightarrow 4x = 2x + k\pi  \\ \Leftrightarrow x = \dfrac{{k\pi }}{2}\)

Kết hợp với điều kiện ta được phương trình vô nghiệm.

Đáp án : D

Chú ý

Nhiều em HS có thể sẽ không tìm ĐKXĐ dẫn đến không kết hợp điều kiện loại nghiệm và chọn nhầm đáp án C là sai.