Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là:
-
A.
\(k\pi ,k \in Z\)
-
B.
\(\dfrac{\pi }{4} + \dfrac{{k\pi }}{2},k \in Z\)
-
C.
\(\dfrac{{k\pi }}{2},k \in Z\)
-
D.
Vô nghiệm
- Tìm điều kiện xác định của phương trình.
- Sử dụng công thức \(\tan u.\cot u = 1\) để biến đổi phương trình về dạng phương trình lượng giác cơ bản $\tan x=\tan y$
- Giải phương trình $\tan x=\tan y$$ \Leftrightarrow x=y+k\pi$, $k \in \mathbb{Z}$
- Kiểm tra điều kiện và loại nghiệm.
ĐKXĐ: \(\left\{ \begin{array}{l}\cos 4x \ne 0\\\sin 2x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4x \ne \dfrac{\pi }{2} + k\pi \\2x \ne k\pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \dfrac{\pi }{8} + \dfrac{{k\pi }}{4}\\x \ne \dfrac{{k\pi }}{2}\end{array} \right.\)
Khi đó, dễ thấy \(\cot 2x \ne 0\) (Nếu \(\cot 2x = 0\) thì phương trình thành 0=1 =>Vô nghiệm) nên phương trình tương đương:
\(\tan 4x.\cot 2x = 1 \Leftrightarrow \tan 4x = \dfrac{1}{{\cot 2x}} \\ \Leftrightarrow \tan 4x = \tan 2x \Leftrightarrow 4x = 2x + k\pi \\ \Leftrightarrow x = \dfrac{{k\pi }}{2}\)
Kết hợp với điều kiện ta được phương trình vô nghiệm.
Đáp án : D
Các bài tập cùng chuyên đề
Với giá trị nào của \(m\) dưới đây thì phương trình \(\sin x = m\) có nghiệm?
Cho phương trình \(\sin x = \sin \alpha \). Chọn kết luận đúng.
Nghiệm của phương trình \(\sin x = - 1\) là:
Chọn mệnh đề sai:
Nghiệm của phương trình \(\sin x = \dfrac{1}{2}\) thỏa mãn $ - \dfrac{\pi }{2} \le x \le \dfrac{\pi }{2}$ là:
Số nghiệm của phương trình \(2\sin \left( {x + \dfrac{\pi }{4}} \right) - 2 = 0\) với \(\pi \le x \le 5\pi \) là:
Nghiệm của phương trình \(\sin x.\cos x = 0\) là:
Phương trình \(\cos 2x = 1\) có nghiệm là:
Chọn mệnh đề đúng:
Nghiệm của phương trình \(2\cos x - 1 = 0\) là:
Số nghiệm của phương trình \(\sqrt 2 \cos \left( {x + \dfrac{\pi }{3}} \right) = 1\) với \(0 \le x \le 2\pi \) là:
Nghiệm của phương trình \(\cos 3x = \cos x\) là:
Nghiệm của phương trình \({\sin ^2}x-\sin x = 0\) thỏa điều kiện: \(0 < x < \pi \).
Nghiệm của phương trình \(\sin 3x = \cos x\) là:
Nghiệm của phương trình \(\sqrt 3 \tan x + 3 = 0\) là:
Phương trình \(\tan \dfrac{x}{2} = \tan x\) có nghiệm:
Phương trình \(\sqrt 3 \cot \left( {5x - \dfrac{\pi }{8}} \right) = 0\) có nghiệm là:
Tập nghiệm của phương trình \(\tan x.\cot x = 1\) là:
Phương trình \(\tan \left( {\dfrac{\pi }{2} - x} \right) + 2\tan \left( {2x + \dfrac{\pi }{2}} \right) = 1\) có nghiệm là:
Phương trình \(\cos 11x\cos 3x = \cos 17x\cos 9x\) có nghiệm là: