Cho hàm số \(y = \sqrt {2x - {x^2}} \). Mệnh đề nào sau đây là đúng ?
-
A.
\({y^3}.y'' + 1 = 0\)
-
B.
\({y^2}.y'' - 1 = 0\)
-
C.
\(3{y^2}.y'' + 1 = 0\)
-
D.
\(2{y^3}.y'' + 3 = 0\)
Tính $y’’$, thay vào từng đáp án để xét tính đúng sai của các đáp án.
Ta có :
$\begin{array}{l}y' = \dfrac{{\left( {2x - {x^2}} \right)'}}{{2\sqrt {2x - {x^2}} }} = \dfrac{{2 - 2x}}{{2\sqrt {2x - {x^2}} }} = \dfrac{{1 - x}}{{\sqrt {2x - {x^2}} }}\\y'' = \dfrac{{ - \sqrt {2x - {x^2}} - \left( {1 - x} \right).\dfrac{{1 - x}}{{\sqrt {2x - {x^2}} }}}}{{2x - {x^2}}} \end{array}$
$= \dfrac{{ - \left( {2x - {x^2}} \right) - {{\left( {1 - x} \right)}^2}}}{{\sqrt {2x - {x^2}} \left( {2x - {x^2}} \right)}} $ $= \dfrac{{ - 2x + {x^2} - 1 + 2x - {x^2}}}{{\sqrt {2x - {x^2}} \left( {2x - {x^2}} \right)}} $ $= \dfrac{{ - 1}}{{\sqrt {{{\left( {2x - {x^2}} \right)}^3}} }}$
Thay vào \({y^3}.y'' + 1 \) \(= {\left( {\sqrt {2x - {x^2}} } \right)^3}.\dfrac{{ - 1}}{{\sqrt {{{\left( {2x - {x^2}} \right)}^3}} }} + 1 \) \(= - 1 + 1 = 0\)
Đáp án : A
Các bài tập cùng chuyên đề
Cho hàm số \(y = {x^2} + 2x\). Chọn mệnh đề đúng:
Hàm số \(y = \dfrac{x}{{x - 2}}\) có đạo hàm cấp hai là:
Hàm số \(y = {\left( {{x^2} + 1} \right)^3}\) có đạo hàm cấp ba là:
Hàm số \(y = \sqrt {2x + 5} \) có đạo hàm cấp hai bằng
Đạo hàm cấp hai của hàm số \(y = \tan x\) bằng:
Cho hàm số \(y = {\left( {{x^2} - 1} \right)^2}.\) Tính giá trị biểu thức \(M = {y^{\left( 4 \right)}} + 2xy''' - 4y''.\)
Giả sử \(h\left( x \right) = 5{\left( {x + 1} \right)^3} + 4\left( {x + 1} \right)\). Tập nghiệm của phương trình \(h''\left( x \right) = 0\) là:
Cho hàm số \(y = \sin x\). Chọn câu sai ?
Xét \(y = f\left( x \right) = \cos \left( {2x - \dfrac{\pi }{3}} \right)\). Phương trình \({f^{\left( 4 \right)}}\left( x \right) = - 8\) có nghiệm \(x \in \left[ {0;\dfrac{\pi }{2}} \right]\) là:
Cho hàm số \(y = \sin 2x\). Hãy chọn câu đúng?
Cho hàm số \(y = f\left( x \right) = - \dfrac{1}{x}\). Xét hai mệnh đề:
(I): \(y'' = f''\left( x \right) = \dfrac{2}{{{x^3}}}\)
(II): \(y''' = f'''\left( x \right) = - \dfrac{6}{{{x^4}}}\)
Mệnh đề nào đúng?
Với \(f\left( x \right) = {\sin ^3}x + {x^2}\) thì \(f''\left( { - \dfrac{\pi }{2}} \right)\) bằng:
Cho hàm số \(y = 3{x^5} - 5{x^4} + 3x - 2\). Giải bất phương trình \(y'' < 0\).
Nếu $f''\left( x \right) = \dfrac{{2\sin x}}{{{{\cos }^3}x}}$, thì $f(x)$ bằng:
Cho hàm số \(f\left( x \right) = {\left( {ax + b} \right)^5}\) (với $a, b$ là tham số). Tính \({f^{\left( {10} \right)}}\left( 1 \right)\)
Cho hàm số \(y = \cos x\). Khi đó \({y^{\left( {2018} \right)}}\left( x \right)\) bằng:
Một chất điểm chuyển động thẳng xác định bởi phương trình \(s = {t^3} - 2{t^2} + 4t + 1\) trong đó $t$ là giây, $s$ là mét. Gia tốc chuyển động khi $t = 2$ là
Đạo hàm cấp 4 của hàm số \(y = \sin 5x.\sin 3x\) là :
Đạo hàm cấp $n$ của hàm số \(\dfrac{1}{{ax + b}},\,a \ne 0\) là
Đạo hàm cấp 4 của hàm số \(y = \dfrac{{2x + 1}}{{{x^2} - 5x + 6}}\) là :