Đề bài

Cho hàm số \(f\left( x \right) = {e^{2x}} - 2x\).

a) Hàm số có tập xác định là R.

Đúng
Sai

b) Đạo hàm của hàm số đã cho là \(f'\left( x \right) = 2{e^{2x}} - 2\).

Đúng
Sai

c) Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là \(S = \left( {0; + \infty } \right)\).

Đúng
Sai

d) Hàm số đã cho có giá trị cực tiểu bằng 0.

Đúng
Sai
Đáp án

a) Hàm số có tập xác định là R.

Đúng
Sai

b) Đạo hàm của hàm số đã cho là \(f'\left( x \right) = 2{e^{2x}} - 2\).

Đúng
Sai

c) Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là \(S = \left( {0; + \infty } \right)\).

Đúng
Sai

d) Hàm số đã cho có giá trị cực tiểu bằng 0.

Đúng
Sai
Phương pháp giải

Tìm tập xác định của hàm số \(f(x)\).

Tính đạo hàm f’(x) của hàm số \(f(x)\).

Lập bảng biến thiên rồi kết luận giá trị cực tiểu của hàm số.

Lời giải của GV Loigiaihay.com

a) Đúng. Hàm số đã cho có tập xác định là \(\mathbb{R}\).

b) Đúng. \(f'(x) = \left( {2{e^{2x}} - 2x} \right)' = 2{e^{2x}} - 2\).

c) Đúng. \(f'(x) > 0 \Leftrightarrow 2{e^{2x}} - 2 > 0 \Leftrightarrow {e^{2x}} > 1 \Leftrightarrow 2x > 0 \Leftrightarrow x > 0\).

Vậy tập nghiệm của bất phương trình là \(S = \left( {0; + \infty } \right)\).

d) Sai. Ta có \(f'(x) = 0 \Leftrightarrow x > 0\).

Bảng biến thiên:

Hàm số đã cho có giá trị cực tiểu bằng 1.

Các bài tập cùng chuyên đề

Bài 1 :

Xét một thấu kính hội tụ có tiêu cự f (H.1.39). Khoảng cách p từ vật đến thấu kính liên hệ với khoảng cách q từ ảnh đến thấu kính bởi hệ thức: \(\frac{1}{p} + \frac{1}{q} = \frac{1}{f}\).

a) Viết công thức tính \(q = g\left( p \right)\) như một hàm số của biến \(p \in \left( {f; + \infty } \right)\).
b) Tính các giới hạn \(\mathop {\lim }\limits_{p \to + \infty } g\left( p \right),\mathop {\lim }\limits_{p \to {f^ + }} g\left( p \right)\) và giải thích ý nghĩa các kết quả này.
Lập bảng biến thiên của hàm số \(q = g\left( p \right)\) trên khoảng \(\left( {f; + \infty } \right)\).

Xem lời giải >>
Bài 2 :

Lập bảng biến thiên và vẽ đồ thị của hàm số \(y = {x^2} - 2x - 3\).

 
Xem lời giải >>
Bài 3 :

Cho hàm số \(y =  - {x^2} + 4x - 3\)

a) Lập bảng biến thiên.

b) Vẽ đồ thị của hàm số.

 
Xem lời giải >>
Bài 4 :

Cho hàm số \(f(x) = 2\cos x + x\).

Xem lời giải >>
Bài 5 :

Cho hàm số \(f(x) = 5x - {\log _3}(x + 1)\).

Xem lời giải >>
Bài 6 :

Cho hàm số f(x) = 4sinx + 2x + 1.

Xem lời giải >>
Bài 7 :

Cho hàm số \(f(x) = \ln x - \frac{x}{2}\).

Xem lời giải >>
Bài 8 :

Cho hàm số \(y = {x^3} - 3{x^2} + 4\).

Xem lời giải >>