Bài 7.13 trang 50 SGK Toán 11 tập 2 - Cùng khám phá


Tính đạo hàm của hàm số sau bằng định nghĩa:

Đề bài

Tính đạo hàm của hàm số sau bằng định nghĩa:

a, \(y =  - {x^2}\) tại \({x_0} = 2\)

b, \(y = \frac{1}{{x + 2}}\) tại \({x_0} =  - 3\)

Phương pháp giải - Xem chi tiết

Dùng định nghĩa để tính đạo hàm

Lời giải chi tiết

a, Ta có:

\(f'(2) = \mathop {\lim }\limits_{x \to 2} \frac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - {x^2} - ( - {2^2})}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - {x^2} + 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - (x - 2)(x + 2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2}  - (x + 2) =  - 4\).

b, Ta có:

\(f'(3) = \mathop {\lim }\limits_{x \to 3} \frac{{f(x) - f(3)}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{\frac{1}{{x + 2}} - \frac{1}{5}}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{3 - x}}{{(x - 3).5.(x + 2)}} = \mathop {\lim }\limits_{x \to 3} \frac{{ - 1}}{{5.(x + 2)}} = \frac{{ - 1}}{{25}}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí