Bài 6 trang 140 SGK Đại số 10


Trên đường tròn lượng giác gốc A, xác định các điểm M khác nhau

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Trên đường tròn lượng giác gốc \(A\), xác định các điểm \(M\) khác nhau, biết rằng cung \(AM\) có số đo tương ứng là (trong đó \(k\) là một số nguyên tuỳ ý)

LG a

\(kπ\);

Phương pháp giải:

+) Vẽ lên đường tròn lượng giác.

Chú ý: Cung có số đo dạng \(\alpha  + \frac{{k2\pi }}{n}\) thì sẽ có \(n\) điểm biểu diễn trên đường tròn lượng giác.

Lời giải chi tiết:

+) \(k = 0 \Rightarrow sdAM = 0\) \( \Rightarrow M \equiv A\left( {1;0} \right)\)

+) \(k = 1 \Rightarrow sdAM = \pi \) \( \Rightarrow M \equiv {M_1}\left( { - 1;0} \right)\)

Vậy ta có 2 điểm \(A,{M_1}\) như hình vẽ.

Cách khác:

Nếu k = 2n +1 (n ∈ Z) (thì kπ = (2n + 1)π = 2nπ + π nên M ≡ \(M_1(-1;0)\)

Nếu k = 2n (n ∈ Z) thì kπ = 2nπ nên M ≡ A(1;0)

Vậy ta có các điểm \(M_1(-1; 0), A(1; 0)\)

LG b

\(\displaystyle k{\pi  \over 2}\);

Phương pháp giải:

+) Vẽ lên đường tròn lượng giác.

Lời giải chi tiết:

+) \(k = 0 \Rightarrow sdAM = 0\) \( \Rightarrow M \equiv A\left( {1;0} \right)\)

+) \(k = 1 \Rightarrow sdAM = \dfrac{\pi }{2}\) \( \Rightarrow M \equiv {M_1}\left( {0;1} \right)\)

+) \(k = 2 \Rightarrow sdAM = \dfrac{{2\pi }}{2} = \pi \) \( \Rightarrow M \equiv {M_2}\left( { - 1;0} \right)\)

+) \(k = 3 \Rightarrow sdAM = \dfrac{{3\pi }}{2}\) \( \Rightarrow M \equiv {M_3}\left( {0; - 1} \right)\)

Vậy ta có 4 điểm như hình vẽ.

Cách khác:

Nếu \(k = 4m\) thì \(k.\dfrac{\pi }{2} = 4m.\dfrac{\pi }{2}\) \( = 2m\pi \)

\( \Rightarrow M \equiv A\left( {1;0} \right)\)

Nếu \(k = 4m + 1\) thì \(k.\dfrac{\pi }{2} = \left( {4m + 1} \right).\dfrac{\pi }{2}\) \( = 2m\pi  + \dfrac{\pi }{2}\)

\( \Rightarrow M \equiv {M_1}\left( {0;1} \right)\)

Nếu \(k = 4m + 2\) thì \(k.\dfrac{\pi }{2} = \left( {4m + 2} \right).\dfrac{\pi }{2}\) \( = 2m\pi  + \pi \)

\( \Rightarrow M \equiv {M_2}\left( { - 1;0} \right)\)

Nếu \(k = 4m + 3\) thì \(k.\dfrac{\pi }{2} = \left( {4m + 3} \right).\dfrac{\pi }{2}\) \( = 2m\pi  + \dfrac{{3\pi }}{2}\)

\( \Rightarrow M \equiv {M_3}\left( {0; - 1} \right)\)

LG c

\(\displaystyle k{\pi  \over 3}\).

Phương pháp giải:

+) Vẽ lên đường tròn lượng giác.

Lời giải chi tiết:

+) \(k = 0 \Rightarrow sdAM = 0\) \( \Rightarrow M \equiv A\left( {1;0} \right)\)

+) \(k = 1 \Rightarrow sdAM = \dfrac{\pi }{3}\) \( \Rightarrow M \equiv {M_1}\left( {\dfrac{1}{2};\dfrac{{\sqrt 3 }}{2}} \right)\)

+) \(k = 2 \Rightarrow sdAM = \dfrac{{2\pi }}{3}\) \( \Rightarrow M \equiv {M_2}\left( { - \dfrac{1}{2};\dfrac{{\sqrt 3 }}{2}} \right)\)

+) \(k = 3 \Rightarrow sdAM = \dfrac{{3\pi }}{3} = \pi \) \( \Rightarrow M \equiv {M_3}\left( { - 1;0} \right)\)

+) \(k = 4 \Rightarrow sdAM = \dfrac{{4\pi }}{3}\) \( \Rightarrow M \equiv {M_1}\left( { - \dfrac{1}{2}; - \dfrac{{\sqrt 3 }}{2}} \right)\)

+) \(k = 5 \Rightarrow sdAM = \dfrac{{5\pi }}{3}\) \( \Rightarrow M \equiv {M_5}\left( {\dfrac{1}{2}; - \dfrac{{\sqrt 3 }}{2}} \right)\)

Vậy ta có các điểm \(A,{M_1},{M_2},{M_3},{M_4},{M_5}\) như hình.

Cách khác:

Loigiaihay.com


Bình chọn:
4.1 trên 38 phiếu

Các bài liên quan: - Bài 1. Cung và góc lượng giác

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.