Bài 6 trang 116 SGK Toán 11 tập 2 - Cánh Diều>
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),AC \bot BC,\)\(SA = BC = a\sqrt 3 ,AC = a\)(Hình 99).
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),AC \bot BC,\)\(SA = BC = a\sqrt 3 ,AC = a\)(Hình 99).
a) Tính góc giữa hai đường thẳng \(SA\) và \(BC\).
b) Tính góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABC} \right)\).
c) Tính số đo của góc nhị diện \(\left[ {B,SA,C} \right]\).
d) Tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SAC} \right)\).
e) Tính khoảng cách giữa hai đường thẳng \(SA\) và \(BC\).
g) Tính thể tích của khối chóp \(S.ABC\).
Phương pháp giải - Xem chi tiết
a) Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):
Bước 1: Lấy một điểm \(O\) bất kì.
Bước 2: Qua điểm \(O\) dựng đường thẳng \(a'\parallel a\) và đường thẳng \(b'\parallel b\).
Bước 3: Tính \(\left( {a,b} \right) = \left( {a',b'} \right)\).
b) Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.
c) Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)
Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).
Bước 2: Tìm mặt phẳng \(\left( R \right) \bot c\).
Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).
Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).
d) Cách tính khoảng cách từ một điểm đến một mặt phẳng: Tính khoảng cách từ điểm đó đến hình chiếu của nó lên mặt phẳng.
e) Cách tính khoảng cách giữa hai đường thẳng chéo nhau:
Cách 1: Dựng đường vuông góc chung.
Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.
g) Sử dụng công thức tính thể tích khối chóp: \(V = \frac{1}{3}Sh\).
Lời giải chi tiết
a) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC \Rightarrow \left( {SA,BC} \right) = {90^ \circ }\).
b) \(SA \bot \left( {ABC} \right) \Rightarrow \left( {SC,\left( {ABC} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)
\(\Delta SAC\) vuông tại \(A \Rightarrow \tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \Rightarrow \widehat {SCA} = {60^ \circ }\)
Vậy \(\left( {SC,\left( {ABC} \right)} \right) = {60^ \circ }\).
c) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AB,SA \bot AC\)
Vậy \(\widehat {BAC}\) là góc nhị diện \(\left[ {B,SA,C} \right]\).
\(\Delta ABC\) vuông tại \(C \Rightarrow \tan \widehat {BAC} = \frac{{BC}}{{AC}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \Rightarrow \widehat {BAC} = {60^ \circ }\).
d)
\(\begin{array}{l}\left. \begin{array}{l}SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\\AC \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {SAC} \right)\\ \Rightarrow d\left( {B,\left( {SAC} \right)} \right) = BC = a\sqrt 3 \end{array}\)
e) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AC,AC \bot BC\)
\( \Rightarrow d\left( {SA,BC} \right) = AC = a\)
g) \({S_{\Delta ABC}} = \frac{1}{2}AC.BC = \frac{1}{2}a.a\sqrt 3 = \frac{{{a^2}\sqrt 3 }}{2}\)
\(\begin{array}{l}h = SA = a\sqrt 3 \\ \Rightarrow {V_{S.ABC}} = \frac{1}{3}.{S_{\Delta ABC}}.SA = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{2}.a\sqrt 3 = \frac{{{a^3}}}{2}\end{array}\)
- Bài 7 trang 116 SGK Toán 11 tập 2 - Cánh Diều
- Bài 8 trang 116 SGK Toán 11 tập 2 - Cánh Diều
- Bài 5 trang 116 SGK Toán 11 tập 2 - Cánh Diều
- Bài 4 trang 116 SGK Toán 11 tập 2 - Cánh Diều
- Bài 3 trang 116 SGK Toán 11 tập 2 - Cánh Diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều