

Bài 44 trang 45 SGK Toán 7 tập 2>
Đề bài
Cho hai đa thức: \(P(x) = - 5{x^3} - \dfrac{1}{3} + 8{x^4} + {x^2}\)
và \(Q(x) = {x^2} - 5x - 2{x^3} + {x^4} - \dfrac{2}{3}\).
Hãy tính \(P(x) + Q(x)\) và \(P(x) - Q(x)\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sắp xếp hai đa thức theo lũy thừa giảm dần của biến rồi sau đó thực hiện phép tính cộng hoặc phép tính trừ theo hàng dọc.
Lời giải chi tiết
Cách 1:
Ta sắp xếp hai đa thức theo lũy thừa giảm dần của biến như sau:
\(P(x) = 8{x^4} - 5{x^3} + {x^2} - \dfrac{1}{3}\) ;
\(Q(x) = {x^4} - 2{x^3} + {x^2} - 5x - \dfrac{2}{3}\).
Thực hiện phép tính ta có:
Cách 2:
\(P(x)+Q(x) = 8{x^4} - 5{x^3} + {x^2} - \dfrac{1}{3}+ {x^4} - 2{x^3} + {x^2} - 5x - \dfrac{2}{3}\\=( 8{x^4}+x^4) +[( - 5{x^3})+ (- 2{x^3})] + ( {x^2} + {x^2} )+[(- \dfrac{1}{3})+( - \dfrac{2}{3})]\\=9x^4 - 7x^3 + 2x^2-5x-1\)
\(P(x)-Q(x) = 8{x^4} - 5{x^3} + {x^2} - \dfrac{1}{3}-( {x^4} - 2{x^3} + {x^2} - 5x - \dfrac{2}{3})\\= 8{x^4} - 5{x^3} + {x^2} - \dfrac{1}{3}- {x^4} + 2{x^3} - {x^2} +5x + \dfrac{2}{3}\\=( 8{x^4}-x^4) +[( - 5{x^3})+ 2{x^3}]+ ( {x^2} - {x^2} )+[(- \dfrac{1}{3})+\dfrac{2}{3}]\\=7x^4 - 3x^3 +5x+\dfrac{1}{3}\)


- Bài 45 trang 45 SGK Toán 7 tập 2
- Bài 46 trang 45 SGK Toán 7 tập 2
- Bài 47 trang 45 SGK Toán 7 tập 2
- Bài 48 trang 46 SGK Toán 7 tập 2
- Bài 49 trang 46 SGK Toán 7 tập 2
>> Xem thêm
- Lý thuyết tập hợp Q các số hữu tỉ
- Lý thuyết định lí Py-ta-go
- Lý thuyết về hai đường thẳng song song
- Lý thuyết số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn
- Lý thuyết tiên đề Ơ-clit về đường thẳng song song
- Lý thuyết về làm tròn số
- Lý thuyết về phân thức đại số
- Lý thuyết tính chất ba đường trung tuyến của tam giác
- Lý thuyết tỉ lệ thức
- Lý thuyết về cộng, trừ đa thức