Bài 4.19 trang 87 SGK Toán 11 tập 1 - Kết nối tri thức


Cho hình chóp S.ABCD có đáy là hình thang (AB//CD). Gọi E là một điểm nằm giữa S và A. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng AB, AD. Xác định giao tuyến của (P) và các mặt bên của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

Đề bài

Cho hình chóp S.ABCD có đáy là hình thang (AB // CD). Gọi E là một điểm nằm giữa S và A. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng AB, AD. Xác định giao tuyến của (P) và các mặt bên của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Đường thẳng a song song với mặt phẳng (P) nếu a không thuộc (P) và a song song với b thuộc (P).

- Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b thì b song song với a.

Lời giải chi tiết

Mặt phẳng (SAD) chứa đường thẳng AD song song với mặt phẳng (P) nên mặt phẳng (P) cắt (SAD) theo giao tuyến song song với AD. Vẽ EG // AD (G thuộc SD) thì EG là giao tuyến của (P) và (SAD).

Mặt phẳng (SAB) chứa đường thẳng AB song song với mặt phẳng (P) nên mặt phẳng (P) cắt (SAB) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc SB) thì EF là giao tuyến của (P) và (SAB).

Ta có \(\left\{ \begin{array}{l}AB//CD\\AB//EF\end{array} \right. \Rightarrow CD//EF \Rightarrow CD//(P)\).

Mặt phẳng (SCD) chứa đường thẳng CD song song với mặt phẳng (P) nên mặt phẳng (P) cắt (SCD) theo giao tuyến song song với CD. Vẽ GH // CD (H thuộc SC) thì GH là giao tuyến của (P) và (SCD).

FH thuộc (P), FH thuộc (SBC) suy ra FH là giao tuyến của (P) và (SBC).

Tứ giác EFHG có EF // GH (vì cùng song song với CD) suy ra EFHG là hình thang.


Bình chọn:
4.4 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Group 2K9 Ôn Thi ĐGNL & ĐGTD Miễn Phí