Bài 4 trang 148 SGK Đại số 10


Tính các giá trị lượng giác của góc α, nếu:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính các giá trị lượng giác của góc \(α\), nếu:

LG a

\(\cosα = \dfrac{4}{13}\) và \(0 < α < \dfrac{\pi }{2}\);

Phương pháp giải:

Áp dụng các công thức: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1,\;\;\tan \alpha .\cot \alpha  = 1,\) \(\tan \alpha  = \dfrac{{\sin \alpha }}{{\cos \alpha }},\;\;\cot \alpha  = \dfrac{{\cos \alpha }}{{\sin \alpha }}.\)

Lời giải chi tiết:

Do \(0 < α <  \dfrac{\pi}{2}\) nên \(\sinα > 0\)

Ta có:

\(\begin{array}{l}{\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\\ \Rightarrow {\sin ^2}\alpha  = 1 - {\cos ^2}\alpha \\ = 1 - {\left( {\dfrac{4}{{13}}} \right)^2} = \dfrac{{153}}{{169}}\\ \Rightarrow \sin \alpha  = \sqrt {\dfrac{{153}}{{169}}}  = \dfrac{{3\sqrt {17} }}{{13}}\\ \tan \alpha  = \dfrac{{\sin \alpha }}{{\cos \alpha }} = \dfrac{{3\sqrt {17} }}{{13}}:\dfrac{4}{{13}} = \dfrac{{3\sqrt {17} }}{4} \\ \cot \alpha  = \dfrac{{\cos \alpha }}{{\sin \alpha }} = \dfrac{4}{{13}}:\dfrac{{3\sqrt {17} }}{{13}} = \dfrac{{4\sqrt {17} }}{{51}}\end{array}\)

LG b

\(\sin α = -0,7\) và \(π < α <  \dfrac{3\pi }{2}\);

Lời giải chi tiết:

\(π < α <  \dfrac{3\pi }{2}\) nên \( \cosα < 0 \)

Ta có:

\(\begin{array}{l}{\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\\ \Rightarrow {\cos ^2}\alpha  = 1 - {\sin ^2}\alpha \\ = 1 - {\left( { - 0,7} \right)^2} = 0,51\\ \Rightarrow \cos \alpha  =   - \dfrac{{\sqrt {51} }}{{10}}  \\\tan \alpha  = \dfrac{{\sin \alpha }}{{\cos \alpha }} = \dfrac{{ - 0,7}}{- \dfrac{{\sqrt {51} }}{{10}} } = \dfrac{7}{{\sqrt {51} }}\\\cot \alpha  = \dfrac{{\cos \alpha }}{{\sin \alpha }}   = \frac{{ - \frac{{\sqrt {51} }}{{10}}}}{{ - 0,7}}= \dfrac{{\sqrt {51} }}{7}\end{array}\).

LG c

\(\tan α =  -\dfrac{15}{7}\) và \( \dfrac{\pi }{2} < α < π\);

Lời giải chi tiết:

\( \dfrac{\pi }{2} < α < π\) nên \(\sinα > 0, \cosα < 0,\) \( \tan α < 0, \cot α < 0 \)

Ta có:

\(\begin{array}{l}\tan \alpha .\cot \alpha  = 1\\ \Rightarrow \cot \alpha  = \dfrac{1}{{\tan \alpha }} = \dfrac{1}{{ - \dfrac{{15}}{7}}} =  - \dfrac{7}{{15}}\\\dfrac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha \\ \Rightarrow {\cos ^2}\alpha  = \dfrac{1}{{1 + {{\tan }^2}\alpha }}\\ = \dfrac{1}{{1 + {{\left( { - \dfrac{{15}}{7}} \right)}^2}}} = \dfrac{{49}}{{274}}\\ \Rightarrow \cos \alpha  =  - \dfrac{7}{{\sqrt {274} }}\\\tan \alpha  = \dfrac{{\sin \alpha }}{{\cos \alpha }}\\ \Rightarrow \sin \alpha  = \tan \alpha .\cos \alpha \\ =  - \dfrac{{15}}{7}.\left( { - \dfrac{7}{{\sqrt {274} }}} \right) = \dfrac{{15}}{{\sqrt {274} }}\end{array}\)

LG d

\(\cotα = -3\) và \( \dfrac{3\pi }{2} < α < 2π\).

Lời giải chi tiết:

 Vì \( \dfrac{3\pi}{2} < α < 2π\) nên \(\sinα < 0, \cosα > 0,\)\( \tanα < 0, \cotα < 0\)

Ta có:

\(\begin{array}{l}\tan \alpha .\cot \alpha  = 1\\ \Rightarrow \tan \alpha  = \dfrac{1}{{\cot \alpha }} = \dfrac{1}{{ - 3}} =  - \dfrac{1}{3}\\\dfrac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha \\ \Rightarrow \cos ^2 \alpha = \dfrac{1}{{1 + {{\tan }^2}\alpha }}\\ = \dfrac{1}{{1 + {{\left( { - \dfrac{1}{3}} \right)}^2}}} = \dfrac{9}{{10}}\\ \Rightarrow  \cos \alpha  = \dfrac{{3 }}{\sqrt {10} }\\\tan \alpha  = \dfrac{{\sin \alpha }}{{\cos \alpha }}\\ \Rightarrow \sin \alpha  = \tan \alpha .\cos \alpha \\ =  - \dfrac{1}{3}.\dfrac{{3 }}{\sqrt {10} } =  - \dfrac{{1}}{\sqrt {10} }\end{array}\) 

Loigiaihay.com


Bình chọn:
4.5 trên 75 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!