Bài 3.21 trang 81 SGK Toán 11 tập 1 - Cùng khám phá


\(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{4x - 4}}{{x - 2}}\) là

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

\(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{4x - 4}}{{x - 2}}\)

A. \(4.\)                                                

B. \( - 4.\)

C. \( + \infty .\)                                       

D. \( - \infty .\)

 

Phương pháp giải - Xem chi tiết

Đây là giới hạn một bên của hàm số

Tính giới hạn của tử số và giới hạn của mẫu số rồi áp dụng quy tắc tính giới hạn của một thương

\(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} =  + \infty \) và \(\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} =  - \infty \), với mọi số thực \(a\).

Lời giải chi tiết

Ta có \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {4x - 4} \right) = 4.2 - 4 = 4 > 0\)

Với \(x < 2 \Rightarrow x - 2 < 0\) và \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 2} \right) = 0\) do đó \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{4x - 4}}{{x - 2}} =  - \infty \)

Đáp án D


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí