

Bài 1 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo
Cho hình chóp (S.ABCD) có đáy là hình thoi (ABCD) cạnh (a). Cho biết (SA = asqrt 3 ,SA bot AB) và (SA bot A{rm{D}}).
Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a. Cho biết SA=a√3,SA⊥AB và SA⊥AD. Tính góc giữa SB và CD, SD và CB.
Phương pháp giải - Xem chi tiết
Cách xác định góc giữa hai đường thẳng a và b:
Bước 1: Lấy một điểm O bất kì.
Bước 2: Qua điểm O dựng đường thẳng a′∥a và đường thẳng b′∥b.
Bước 3: Tính (a,b)=(a′,b′).
Lời giải chi tiết
a) Ta có: CD∥AB⇒(SB,CD)=(SB,AB)=^SBA.
tan^SBA=SAAB=a√3a=√3⇒^SBA=60∘
Vậy (SB,CD)=60∘.
a) Ta có: CB∥AD⇒(SD,CB)=(SD,AD)=^SDA.
tan^SDA=SAAD=a√3a=√3⇒^SDA=60∘
Vậy (SD,CB)=60∘.


- Bài 2 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 3 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 4 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 5 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 6 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo