Bài 1 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Chứng minh dãy số hữu hạn sau là cấp số cộng: \(1; - 3; - 7; - 11; - 15\).
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Chứng minh dãy số hữu hạn sau là cấp số cộng: \(1; - 3; - 7; - 11; - 15\).
Phương pháp giải - Xem chi tiết
Chứng minh các số hạng liên tiếp nhau hơn kém nhau cùng một số không đổi.
Lời giải chi tiết
Ta có:
\( - 3 = 1 + \left( { - 4} \right); - 7 = \left( { - 3} \right) + \left( { - 4} \right); - 11 = \left( { - 7} \right) + \left( { - 4} \right); - 15 = \left( { - 11} \right) + \left( { - 4} \right)\)
Vậy dãy số trên là cấp số cộng với công sai \(d = - 4\).
- Bài 2 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 3 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 4 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 5 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 6 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo