Bài 1 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Tìm ({u_2},{u_3}) và dự đoán công thức số hạng tổng quát ({u_n}) của dãy số:
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Tìm \({u_2},{u_3}\) và dự đoán công thức số hạng tổng quát \({u_n}\) của dãy số:
\(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = \frac{{{u_n}}}{{1 + {u_n}}}\left( {n \ge 1} \right)\end{array} \right.\)
Phương pháp giải - Xem chi tiết
‒ Lần lượt thay giá trị \(n = 1;2;3\) vào biểu thức \({u_{n + 1}}\).
‒ Tìm điểm chung của các số hạng của dãy số \(\left( {{u_n}} \right)\).
Lời giải chi tiết
Ta có:
\(\begin{array}{l}{u_2} = \frac{{{u_1}}}{{1 + {u_1}}} = \frac{1}{{1 + 1}} = \frac{1}{2}\\{u_3} = \frac{{{u_2}}}{{1 + {u_2}}} = \frac{{\frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\end{array}\)
Suy ra, \({u_n} = \frac{1}{n}\)
- Bài 2 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 3 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 4 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 6 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo