Trả lời câu hỏi 2 Bài 9 trang 48 SGK Toán 7 Tập 2


Trả lời câu hỏi 2 Bài 9 trang 48 SGK Toán 7 Tập 2. Trong các số cho sau, với mỗi đa thức, số nào là nghiệm của đa thức?

Đề bài

Trong các số cho sau, với mỗi đa thức, số nào là nghiệm của đa thức?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Nếu tại \(x = a\) đa thức \(P(x)\) có giá trị bằng \(0\) thì ta nói \(a\) là một nghiệm của đa thức \(P(x)\)

Lời giải chi tiết

a)

- Tại \(x = \dfrac{1}{4}\) ta có:

\(P\left( {\dfrac{1}{4}} \right) = 2.\dfrac{1}{4} + \dfrac{1}{2} = \dfrac{1}{2} + \dfrac{1}{2} = \dfrac{2}{2} \)\(\,= 1\)

Do đó \(x = \dfrac{1}{4}\) không là nghiệm của đa thức \(P(x)\).

- Tại \(x = \dfrac{1}{2}\) ta có:

\(P\left( {\dfrac{1}{2}} \right) = 2.\dfrac{1}{2} + \dfrac{1}{2} = \dfrac{2}{2} + \dfrac{1}{2} = \dfrac{3}{2}\)

Do đó \(x = \dfrac{1}{2}\) không là nghiệm của đa thức \(P(x)\)

- Tại \(x =  - \dfrac{1}{4}\) ta có:

\(P\left( { - \dfrac{1}{4}} \right) = 2.\left( { - \dfrac{1}{4}} \right) + \dfrac{1}{2} \)\(\,=  - \dfrac{2}{4} + \dfrac{1}{2} =  - \dfrac{1}{2} + \dfrac{1}{2} = 0\)

Vậy \(x =  - \dfrac{1}{4}\) là nghiệm của đa thức \(P(x)\).

b)

- Tại \(x=3\) ta có:

\(Q\left( 3 \right) = {3^2} - 2.3 - 3 = 9 - 6 - 3 = 0\)

Vậy \(x=3\) là nghiệm của đa thức \(Q(x)\).

- Tại \(x=1\) ta có:

\(Q\left( 1 \right) = {1^2} - 2.1 - 3 = 1 - 2 - 3 \)\(\,=  - 4\)

Vậy \(x=1\) không là nghiệm của đa thức \(Q(x)\).

- Tại \(x=-1\) ta có:

\(Q\left( { - 1} \right) = {\left( { - 1} \right)^2} - 2.\left( { - 1} \right) - 3 \)\(\,= 1 + 2 - 3 = 0\)

Vậy \(x=-1\) là nghiệm của đa thức \(Q(x)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.7 trên 23 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài