Lý thuyết về nghiệm của đa thức một biến>
Nếu tại x = a đa thức P(x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức P(x).
1. Các kiến thức cần nhớ
Định nghĩa nghiệm đa thức một biến:
Nếu tại \(x = a,\) đa thức $P(x)$ có giá trị bằng $0$ thì ta nói $a$ (hoặc $x = a$) là một nghiệm của đa thức đó.
Ví dụ: Tìm nghiệm của đa thức \(P(y) = 2y + 6\)
Giải
Từ \(2y + 6 = 0 \)\(\Rightarrow 2y = - 6 \Rightarrow y = - \dfrac{6}{2} = - 3\)
Vậy nghiệm của đa thức \(P(y)\) là $– 3.$
Số nghiệm của đa thức một biến
Một đa thức (khác đa thức không) có thể có \(1, 2, 3, ..., n\) nghiệm hoặc không có nghiệm nào.
Tổng quát: Số nghiệm của một đa thức (khác đa thức \(0\)) không vượt qua bậc của nó.
2. Các dạng toán thường gặp
Dạng 1: Kiểm tra xem x=a có là nghiệm của đa thức P(x) hay không?
Phương pháp:
Ta tính \(P\left( a \right)\), nếu \(P\left( a \right) = 0\) thì \(x = a\) là nghiệm của đa thức \(P\left( x \right).\)
Dạng 2: Tìm nghiệm của đa thức
Phương pháp:
Để tìm nghiệm của đa thức \(P\left( x \right)\), ta tìm giá trị của \(x\) sao cho \(P\left( x \right) = 0.\)
Dạng 3: Chứng minh đa thức không có nghiệm
Phương pháp:
Để chứng minh đa thức \(P\left( x \right)\) không có nghiệm, ta chứng minh \(P\left( x \right)\) nhận giá trị khác \(0\) tại mọi giá trị của \(x.\)
- Trả lời câu hỏi 1 Bài 9 trang 48 SGK Toán 7 Tập 2
- Trả lời câu hỏi 2 Bài 9 trang 48 SGK Toán 7 Tập 2
- Bài 54 trang 48 SGK Toán 7 tập 2
- Bài 55 trang 48 SGK Toán 7 tập 2
- Bài 56 trang 48 SGK Toán 7 tập 2
>> Xem thêm