Lý thuyết về nghiệm của đa thức một biến


Nếu tại x = a đa thức P(x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức P(x).

1. Các kiến thức cần nhớ

Định nghĩa nghiệm đa thức một biến:

Nếu tại \(x = a,\) đa thức $P(x)$ có giá trị bằng $0$ thì ta nói $a$ (hoặc $x = a$) là một nghiệm của đa thức đó.

Ví dụ: Tìm nghiệm của đa thức \(P(y) = 2y + 6\)

Giải

Từ \(2y + 6 = 0 \)\(\Rightarrow 2y =  - 6 \Rightarrow y =  - \dfrac{6}{2} =  - 3\)

Vậy nghiệm của đa thức \(P(y)\) là $– 3.$

Số nghiệm của đa thức một biến

Một đa thức (khác đa thức không) có thể có \(1, 2, 3, ..., n\) nghiệm hoặc không có nghiệm nào.

Tổng quát: Số nghiệm của một đa thức (khác đa thức \(0\)) không vượt qua bậc của nó.

2. Các dạng toán thường gặp

Dạng 1: Kiểm tra xem x=a có là nghiệm của đa thức P(x) hay không?

Phương pháp:

Ta tính \(P\left( a \right)\), nếu \(P\left( a \right) = 0\) thì \(x = a\) là nghiệm của đa thức \(P\left( x \right).\)

Dạng 2: Tìm nghiệm của đa thức

Phương pháp:

Để tìm nghiệm của đa thức \(P\left( x \right)\), ta tìm giá trị của \(x\) sao cho \(P\left( x \right) = 0.\)

Dạng 3: Chứng minh đa thức không có nghiệm

Phương pháp:

Để chứng minh đa thức \(P\left( x \right)\) không có nghiệm, ta chứng minh \(P\left( x \right)\) nhận giá trị khác \(0\) tại mọi giá trị của \(x.\)

3. Sơ đồ tư duy

4. Các bài tập vận dụng

Câu 1. Cho đa thức sau : \(f(x) = 3{x^2} + \,15x + 12\). Trong các số sau, số nào là nghiệm của đa thức đã cho:

A. –9

B. 1

C. -1

D. -2

Lời giải

Ta có : f(-9) = 3. (-9)2 + 15 . (-9) + 12 = 3.81 + (-135) +12 = 120

f(1) = 3. 12 +15 . 1 + 12 = 30

f(-1) = 3. (-1)2 + 15. (-1)  +12 = 0

f(-2) = 3. (-2)2 + 15. (-2) + 12 = -6

Vì f(-1) = 0 nên x = -1 là nghiệm của đa thức f(x)

Đáp án C

Câu 2. Tập nghiệm của đa thức \(f(x) = (x + 14)(x - 4)\) là:

A. \({\rm{\{ 4;}}\,{\rm{14\} }}\)

B. \({\rm{\{ }} - {\rm{4;}}\,{\rm{14\} }}\) 

C. \({\rm{\{ }} - {\rm{4;}}\, - {\rm{14\} }}\)

D. \({\rm{\{ 4;}}\, - {\rm{14\} }}\)

Lời giải

\(f(x) = 0 \Rightarrow (x + 14)(x - 4) = 0 \Rightarrow \left[ \begin{array}{l}x + 14 = 0\\x - 4 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x =  - 14\\x = 4\end{array} \right.\)

Vậy tập nghiệm của đa thức f(x) là {4;  –14}.

Đáp án D

Câu 3. Cho \(P(x) =  - 3{x^2} + 27\). Hỏi đa thức P(x) có bao nhiêu nghiệm?

A. 1 nghiệm

B. 2 nghiệm 

C. 3 nghiệm        

D. Vô nghiệm

Lời giải

\(P(x) = 0 \Rightarrow  - 3{x^2} + 27 = 0 \Rightarrow  - 3{x^2} =  - 27 \Rightarrow {x^2} = 9 \Rightarrow \left[ \begin{array}{l}x = 3\\x =  - 3\end{array} \right.\)

Vậy đa thức P(x) có 2 nghiệm.

Đáp án B

Câu 4. Cho \(Q(x) = a{x^2} - 3x + 9\). Tìm a biết Q(x) nhận –3 là nghiệm

A. a = –1

B. a = –4

C. a = –2

D. a = 3

Lời giải

Q(x) nhận –3 là nghiệm nên Q(–3) = 0

\(\begin{array}{l} \Rightarrow a.{( - 3)^2} - 3.( - 3) + 9 = 0 \Rightarrow 9a + 9 + 9 = 0\\ \Rightarrow 9a =  - 18\,\, \Rightarrow \,a =  - 2\end{array}\)

Vậy Q(x) nhận –3 là nghiệm thì \(a =  - 2\).

Đáp án C

Câu 5. Tìm nghiệm của đa thức - x2 + 3x

A. x = 3

B. x = 0

C. x = 0; x = 3

D. x = -3; x = 0

Lời giải

Xét - x2 + 3x = 0

\( \Leftrightarrow \) x . (-x +3) = 0

\( \Leftrightarrow \)\(\left[ {_{ - x + 3 = 0}^{x = 0}} \right. \Leftrightarrow \left[ {_{x = 3}^{x = 0}} \right.\)

Vậy x = 0; x = 3

Đáp án C

Câu 6. Biết \((x - 1)f(x) = (x + 4)f(x + 8)\). Vậy f(x) có ít nhất bao nhiêu nghiệm.

A. 1

B. 2

C. 4

D. f(x) có vô số nghiệm

Lời giải

Vì \((x - 1)f(x) = (x + 4)f(x + 8)\)với mọi x nên suy ra:

  • Khi x – 1 = 0, hay x = 1 thì ta có:

 \((1 - 1).f(1) = (1 + 4)f(1 + 8) \Rightarrow 0.f(1) = 5.f(9)\,\,\, \Rightarrow f(9) = 0\)

Vậy x = 9 là một nghiệm của  f(x).

  • Khi x + 4 = 0, hay x = –4 thì ta có: \(( - 4 - 1).f( - 4) = ( - 4 + 4).f( - 4 + 8)\,\,\, \Rightarrow - 5.f( - 4) = 0.f(4) \Rightarrow f( - 4) = 0\)

Vậy x =  –4  là một nghiệm của  f(x).

Vậy f(x) có ít nhất 2 nghiệm là 9 và –4.

Đáp án B


Bình chọn:
4.6 trên 258 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí