Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức>
1. Phương trình đường thẳng a) Vecto chỉ phương của đường thẳng
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
1. Phương trình đường thẳng
a) Vecto chỉ phương của đường thẳng
Vecto \(\overrightarrow u \ne \overrightarrow 0 \) được gọi là vecto chỉ phương của đường thẳng \(\Delta \) nếu giá của \(\overrightarrow u \) song song hoặc trùng với \(\Delta \). |
b) Phương trình tham số của đường thẳng
Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A({x_0};{y_0};{z_0})\) và có vecto chỉ phương \(\overrightarrow u = (a;b;c)\). Hệ phương trình: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) được gọi là phương trình tham số của đường thẳng \(\Delta \) (t là tham số, \(t \in R\)). |
c) Phương trình chính tắc của đường thẳng
Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A({x_0};{y_0};{z_0})\) và có vecto chỉ phương \(\overrightarrow u = (a;b;c)\) với a, b, c là các số khác 0. Hệ phương trình \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\) được gọi là phương trình chính tắc của đường thẳng \(\Delta \). |
d) Lập phương trình đường thẳng đi qua hai điểm
Trong không gian Oxyz, cho hai điểm phân biệt \({A_1}({x_1};{y_1};{z_1})\) và \({A_2}({x_2};{y_2};{z_2})\). Đường thẳng \({A_1}{A_2}\) có vecto chỉ phương \(\overrightarrow {{A_1}{A_2}} = ({x_2} - {x_1};{y_2} - {y_1};{z_2} - {z_1})\)
|
2. Hai đường thẳng vuông góc
Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) tương ứng có vecto chỉ phương \(\overrightarrow {{u_1}} ({x_1};{y_1};{z_1})\), \(\overrightarrow {{u_2}} ({x_2};{y_2};{z_2})\). Khi đó: \({\Delta _1} \bot {\Delta _2} \Leftrightarrow \overrightarrow {{u_1}} \cdot \overrightarrow {{u_2}} = 0 \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\). |
3. Vị trí tương đối giữa hai đường thẳng
Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) lần lượt đi qua các điểm \({A_1}({x_1};{y_1};{z_1})\), \({A_2}({x_2};{y_2};{z_2})\) và tương ứng có vecto chỉ phương \(\overrightarrow {{u_1}} ({x_1};{y_1};{z_1})\), \(\overrightarrow {{u_2}} ({x_2};{y_2};{z_2})\). Khi đó:
|
- Giải mục 1 trang 41,42,43 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải mục 2 trang 45 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải mục 3 trang 46,47,48 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.11 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.12 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức