Giải bài tập 5.11 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức>
Trong không gian Oxyz, viết các phương trình tham số và chính tắc của đường thẳng \(\Delta \) đi qua \(A\left( {1;{\rm{ }}1;{\rm{ }}2} \right)\) và song song với đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y - 1}}{1} = \frac{{z + 5}}{3}\).
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Trong không gian Oxyz, viết các phương trình tham số và chính tắc của đường thẳng \(\Delta \) đi qua \(A\left( {1;{\rm{ }}1;{\rm{ }}2} \right)\) và song song với đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y - 1}}{1} = \frac{{z + 5}}{3}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình tham số của đường thẳng để viết phương trình tham số đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\). Hệ phương trình \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) được gọi là phương trình tham số của đường thẳng \(\Delta \) (t là tham số, \(t \in \mathbb{R}\)).
Sử dụng kiến thức về phương trình chính tắc của đường thẳng để viết phương trình đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) với a, b, c là các số khác 0. Hệ phương trình \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\) được gọi là phương trình chính tắc của đường thẳng \(\Delta \).
Lời giải chi tiết
Vì \(\Delta \) song song với đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y - 1}}{1} = \frac{{z + 5}}{3}\) nên \(\Delta \) có một có vectơ chỉ phương là \(\overrightarrow u \left( {2;1;3} \right)\). Lại có, đường thẳng \(\Delta \) đi qua \(A\left( {1;1;2} \right)\) nên phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 + t\\z = 2 + 3t\end{array} \right.\) .
Phương trình chính tắc của đường thẳng \(\Delta \) là: \(\frac{{x - 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{3}\).
- Giải bài tập 5.12 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.13 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.14 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.16 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức