Lý thuyết Logarit - SGK Toán 11 Cùng khám phá


A. Lý thuyết 1. Khái niệm logarit a) Định nghĩa

A. Lý thuyết

1. Khái niệm logarit

a) Định nghĩa

Cho hai số thực dương a, b và a khác 1. Số thực \(\alpha \) thỏa mãn đẳng thức \({a^\alpha } = b\) được gọi là logarit cơ số a của b, kí hiệu \({\log _a}b\), nghĩa là

\(\alpha  = {\log _a}b \Leftrightarrow {a^\alpha } = b\).

Lưu ý:

- Không tồn tại logarit của số âm và số 0.

- Logarit cơ số 10 của một số dương b là logarit thập phân của b, ký hiệu logb hay lgb.

- Logarit cơ số e của một số dương b là logarit tự nhiên (hay logarit Nê-pe) của b, ký hiệu lnb.

b) Tính chất

Cho a là một số dương khác 1, b là một số dương và số thực \(\alpha \).

+) \({\log _a}1 = 0\)

+) \({\log _a}a = 1\)

+) \({a^{{{\log }_a}b}} = b\)

+) \({\log _a}({a^\alpha }) = \alpha \)

2. Quy tắc tính logarit

a) Logarit của một tích và logarit của một thương

Cho ba số dương a, \({b_1}\), \({b_2}\) và \(a \ne 1\). Khi đó:

+) \({\log _a}({b_1}{b_2}) = {\log _a}{b_1} + {\log _a}{b_2}\)

+) \({\log _a}\left( {\frac{{{b_1}}}{{{b_2}}}} \right) = {\log _a}{b_1} - {\log _a}{b_2}\)

Lưu ý: \({\log _a}\frac{1}{b} =  - {\log _a}b\).

b) Logarit của một lũy thừa

Cho hai số dương a, b với \(a \ne 1\). Với mọi \(\alpha \), ta có:

\({\log _\alpha }{b^\alpha } = \alpha {\log _a}b\).

Lưu ý : \({\log _a}\sqrt[n]{b} = \frac{1}{n}{\log _a}b\) \((n \in \mathbb{N},n \ge 2)\).

c) Đổi cơ số

Cho ba số thực dương a, b, c với \(a \ne 1\). Khi đó:

\({\log _a}b = \frac{{{{\log }_c}b}}{{{{\log }_c}a}}\) hay \({\log _c}b = {\log _c}a{\log _a}b\).

Lưu ý:

 - Với a, b là hai số thực dương khác 1, ta có \({\log _a}b = \frac{1}{{{{\log }_b}a}}\) hay \({\log _a}b.{\log _b}a = 1\).

- Với a là một số dương khác 1, b là số thực dương và \(\alpha  \ne 0\), ta có \({\log _{{a^\alpha }}} = \frac{1}{\alpha }{\log _a}b\).

3. Một số ứng dụng trong thực tế

a) Độ mạnh của động đất

\(R = \log \frac{A}{{{A_0}}}\) (độ Richter).

b) Độ pH trong hóa học

\(pH =  - \log [{H^ + }]\).

 

B. Bài tập

Bài 1: Tính:

a) \({\log _2}8\).

b) \({\log _{\frac{1}{2}}}4\).

c) \({\log _3}\frac{1}{{27}}\).

Giải:

a) \({\log _2}8 = 3\) vì \({2^3} = 8\).

b) \({\log _{\frac{1}{2}}}4 =  - 2\) vì \({\left( {\frac{1}{2}} \right)^{ - 2}} = 4\).

c) \({\log _3}\frac{1}{{27}} =  - 3\) vì \({3^{ - 3}} = \frac{1}{{27}}\).

Bài 2: Tính:

a) \({3^{2{{\log }_3}5}}\).

b) \({\log _{\frac{1}{2}}}\sqrt {\frac{1}{8}} \).

Giải:

a) \({3^{2{{\log }_3}5}} = {({3^{{{\log }_3}5}})^2} = {5^2} = 25\).

b) \({\log _{\frac{1}{2}}}\sqrt {\frac{1}{8}}  = {\log _{\frac{1}{2}}}{\left( {\frac{1}{2}} \right)^{\frac{3}{2}}} = \frac{3}{2}\).

Bài 3: Không sử dụng máy tính cầm tay, tính các giá trị biểu thức sau:

a) \(A = {\log _6}3 + {\log _6}12\).

b) \(B = {\log _7}21 - {\log _7}147\).

Giải:

a) \(A = {\log _6}3 + {\log _6}12 = {\log _6}(3.12) = {\log _6}(36) = 2\).

b) \(B = {\log _7}21 - {\log _7}147 = {\log _7}\frac{{21}}{{147}} = {\log _7}\frac{1}{7} = {\log _7}{7^{ - 1}} =  - 1\).

Bài 4: Cho \(a = {\log _3}x\); \(b = {\log _3}y\); \(c = {\log _3}z\). Tính \({\log _3}\left( {\frac{{\sqrt[3]{x}}}{{{y^2}.{z^4}}}} \right)\) theo a, b, c.

Giải:

\({\log _3}\left( {\frac{{\sqrt[3]{x}}}{{{y^2}.{z^4}}}} \right) = {\log _3}\sqrt[3]{x} - ({\log _3}{y^2} + {\log _3}{z^4}) = \frac{1}{3}{\log _3}x - (2{\log _3}y + 4{\log _3}z) = \frac{1}{3}a - 2b - 4c\).

Bài 5:

a) Không sử dụng máy tính cầm tay, tính giá trị biểu thức \({\log _{\frac{1}{4}}}({\log _3}4.{\log _2}3)\).

b) Cho \(\alpha  = {\log _3}45\). Tính \({\log _{45}}5\) theo a.

Giải:

a) \({\log _{\frac{1}{4}}}({\log _3}4.{\log _2}3) = {\log _{\frac{1}{4}}}(2{\log _3}2.{\log _2}3) = {\log _{\frac{1}{4}}}2 = {\log _{{2^{ - 2}}}}2 =  - \frac{1}{2}\).

b) Ta có \(\alpha  = {\log _3}45 = {\log _3}({3^2}.5) = 2{\log _3}3 + {\log _3}5 = 2 + {\log _3}5\).

Suy ra \({\log _3}5 = \alpha  - 2\). Vậy \({\log _{45}}5 = \frac{{{{\log }_3}5}}{{{{\log }_3}45}} = \frac{{\alpha  - 2}}{\alpha }\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí